maze_dataset.generation
generation functions have signature (grid_shape: Coord, **kwargs) -> LatticeMaze
and are methods in LatticeMazeGenerators
DEFAULT_GENERATORS
is a list of generator name, generator kwargs pairs used in tests and demos
1"""generation functions have signature `(grid_shape: Coord, **kwargs) -> LatticeMaze` and are methods in `LatticeMazeGenerators` 2 3`DEFAULT_GENERATORS` is a list of generator name, generator kwargs pairs used in tests and demos 4""" 5 6from maze_dataset.generation.generators import ( 7 GENERATORS_MAP, 8 LatticeMazeGenerators, 9 get_maze_with_solution, 10 numpy_rng, 11) 12 13__all__ = [ 14 # submodules 15 "default_generators", 16 "generators", 17 "seed", 18 # imports 19 "LatticeMazeGenerators", 20 "GENERATORS_MAP", 21 "get_maze_with_solution", 22 "numpy_rng", 23]
54class LatticeMazeGenerators: 55 """namespace for lattice maze generation algorithms 56 57 examples of generated mazes can be found here: 58 https://understanding-search.github.io/maze-dataset/examples/maze_examples.html 59 """ 60 61 @staticmethod 62 def gen_dfs( 63 grid_shape: Coord | CoordTup, 64 lattice_dim: int = 2, 65 accessible_cells: float | None = None, 66 max_tree_depth: float | None = None, 67 do_forks: bool = True, 68 randomized_stack: bool = False, 69 start_coord: Coord | None = None, 70 ) -> LatticeMaze: 71 """generate a lattice maze using depth first search, iterative 72 73 # Arguments 74 - `grid_shape: Coord`: the shape of the grid 75 - `lattice_dim: int`: the dimension of the lattice 76 (default: `2`) 77 - `accessible_cells: int | float |None`: the number of accessible cells in the maze. If `None`, defaults to the total number of cells in the grid. if a float, asserts it is <= 1 and treats it as a proportion of **total cells** 78 (default: `None`) 79 - `max_tree_depth: int | float | None`: the maximum depth of the tree. If `None`, defaults to `2 * accessible_cells`. if a float, asserts it is <= 1 and treats it as a proportion of the **sum of the grid shape** 80 (default: `None`) 81 - `do_forks: bool`: whether to allow forks in the maze. If `False`, the maze will be have no forks and will be a simple hallway. 82 - `start_coord: Coord | None`: the starting coordinate of the generation algorithm. If `None`, defaults to a random coordinate. 83 84 # algorithm 85 1. Choose the initial cell, mark it as visited and push it to the stack 86 2. While the stack is not empty 87 1. Pop a cell from the stack and make it a current cell 88 2. If the current cell has any neighbours which have not been visited 89 1. Push the current cell to the stack 90 2. Choose one of the unvisited neighbours 91 3. Remove the wall between the current cell and the chosen cell 92 4. Mark the chosen cell as visited and push it to the stack 93 """ 94 # Default values if no constraints have been passed 95 grid_shape_: Coord = np.array(grid_shape) 96 n_total_cells: int = int(np.prod(grid_shape_)) 97 98 n_accessible_cells: int 99 if accessible_cells is None: 100 n_accessible_cells = n_total_cells 101 elif isinstance(accessible_cells, float): 102 assert accessible_cells <= 1, ( 103 f"accessible_cells must be an int (count) or a float in the range [0, 1] (proportion), got {accessible_cells}" 104 ) 105 106 n_accessible_cells = int(accessible_cells * n_total_cells) 107 else: 108 assert isinstance(accessible_cells, int) 109 n_accessible_cells = accessible_cells 110 111 if max_tree_depth is None: 112 max_tree_depth = ( 113 2 * n_total_cells 114 ) # We define max tree depth counting from the start coord in two directions. Therefore we divide by two in the if clause for neighboring sites later and multiply by two here. 115 elif isinstance(max_tree_depth, float): 116 assert max_tree_depth <= 1, ( 117 f"max_tree_depth must be an int (count) or a float in the range [0, 1] (proportion), got {max_tree_depth}" 118 ) 119 120 max_tree_depth = int(max_tree_depth * np.sum(grid_shape_)) 121 122 # choose a random start coord 123 start_coord = _random_start_coord(grid_shape_, start_coord) 124 125 # initialize the maze with no connections 126 connection_list: ConnectionList = np.zeros( 127 (lattice_dim, grid_shape_[0], grid_shape_[1]), 128 dtype=np.bool_, 129 ) 130 131 # initialize the stack with the target coord 132 visited_cells: set[tuple[int, int]] = set() 133 visited_cells.add(tuple(start_coord)) # this wasnt a bug after all lol 134 stack: list[Coord] = [start_coord] 135 136 # initialize tree_depth_counter 137 current_tree_depth: int = 1 138 139 # loop until the stack is empty or n_connected_cells is reached 140 while stack and (len(visited_cells) < n_accessible_cells): 141 # get the current coord from the stack 142 current_coord: Coord 143 if randomized_stack: 144 current_coord = stack.pop(random.randint(0, len(stack) - 1)) 145 else: 146 current_coord = stack.pop() 147 148 # filter neighbors by being within grid bounds and being unvisited 149 unvisited_neighbors_deltas: list[tuple[Coord, Coord]] = [ 150 (neighbor, delta) 151 for neighbor, delta in zip( 152 current_coord + NEIGHBORS_MASK, 153 NEIGHBORS_MASK, 154 strict=False, 155 ) 156 if ( 157 (tuple(neighbor) not in visited_cells) 158 and (0 <= neighbor[0] < grid_shape_[0]) 159 and (0 <= neighbor[1] < grid_shape_[1]) 160 ) 161 ] 162 163 # don't continue if max_tree_depth/2 is already reached (divide by 2 because we can branch to multiple directions) 164 if unvisited_neighbors_deltas and ( 165 current_tree_depth <= max_tree_depth / 2 166 ): 167 # if we want a maze without forks, simply don't add the current coord back to the stack 168 if do_forks and (len(unvisited_neighbors_deltas) > 1): 169 stack.append(current_coord) 170 171 # choose one of the unvisited neighbors 172 chosen_neighbor, delta = random.choice(unvisited_neighbors_deltas) 173 174 # add connection 175 dim: int = int(np.argmax(np.abs(delta))) 176 # if positive, down/right from current coord 177 # if negative, up/left from current coord (down/right from neighbor) 178 clist_node: Coord = ( 179 current_coord if (delta.sum() > 0) else chosen_neighbor 180 ) 181 connection_list[dim, clist_node[0], clist_node[1]] = True 182 183 # add to visited cells and stack 184 visited_cells.add(tuple(chosen_neighbor)) 185 stack.append(chosen_neighbor) 186 187 # Update current tree depth 188 current_tree_depth += 1 189 else: 190 current_tree_depth -= 1 191 192 return LatticeMaze( 193 connection_list=connection_list, 194 generation_meta=dict( 195 func_name="gen_dfs", 196 grid_shape=grid_shape_, 197 start_coord=start_coord, 198 n_accessible_cells=int(n_accessible_cells), 199 max_tree_depth=int(max_tree_depth), 200 # oh my god this took so long to track down. its almost 5am and I've spent like 2 hours on this bug 201 # it was checking that len(visited_cells) == n_accessible_cells, but this means that the maze is 202 # treated as fully connected even when it is most certainly not, causing solving the maze to break 203 fully_connected=bool(len(visited_cells) == n_total_cells), 204 visited_cells={tuple(int(x) for x in coord) for coord in visited_cells}, 205 ), 206 ) 207 208 @staticmethod 209 def gen_prim( 210 grid_shape: Coord | CoordTup, 211 lattice_dim: int = 2, 212 accessible_cells: float | None = None, 213 max_tree_depth: float | None = None, 214 do_forks: bool = True, 215 start_coord: Coord | None = None, 216 ) -> LatticeMaze: 217 "(broken!) generate a lattice maze using Prim's algorithm" 218 warnings.warn( 219 "gen_prim does not correctly implement prim's algorithm, see issue: https://github.com/understanding-search/maze-dataset/issues/12", 220 ) 221 return LatticeMazeGenerators.gen_dfs( 222 grid_shape=grid_shape, 223 lattice_dim=lattice_dim, 224 accessible_cells=accessible_cells, 225 max_tree_depth=max_tree_depth, 226 do_forks=do_forks, 227 start_coord=start_coord, 228 randomized_stack=True, 229 ) 230 231 @staticmethod 232 def gen_wilson( 233 grid_shape: Coord | CoordTup, 234 **kwargs, 235 ) -> LatticeMaze: 236 """Generate a lattice maze using Wilson's algorithm. 237 238 # Algorithm 239 Wilson's algorithm generates an unbiased (random) maze 240 sampled from the uniform distribution over all mazes, using loop-erased random walks. The generated maze is 241 acyclic and all cells are part of a unique connected space. 242 https://en.wikipedia.org/wiki/Maze_generation_algorithm#Wilson's_algorithm 243 """ 244 assert not kwargs, ( 245 f"gen_wilson does not take any additional arguments, got {kwargs = }" 246 ) 247 248 grid_shape_: Coord = np.array(grid_shape) 249 250 # Initialize grid and visited cells 251 connection_list: ConnectionList = np.zeros((2, *grid_shape_), dtype=np.bool_) 252 visited: Bool[np.ndarray, "x y"] = np.zeros(grid_shape_, dtype=np.bool_) 253 254 # Choose a random cell and mark it as visited 255 start_coord: Coord = _random_start_coord(grid_shape_, None) 256 visited[start_coord[0], start_coord[1]] = True 257 del start_coord 258 259 while not visited.all(): 260 # Perform loop-erased random walk from another random cell 261 262 # Choose walk_start only from unvisited cells 263 unvisited_coords: CoordArray = np.column_stack(np.where(~visited)) 264 walk_start: Coord = unvisited_coords[ 265 np.random.choice(unvisited_coords.shape[0]) 266 ] 267 268 # Perform the random walk 269 path: list[Coord] = [walk_start] 270 current: Coord = walk_start 271 272 # exit the loop once the current path hits a visited cell 273 while not visited[current[0], current[1]]: 274 # find a valid neighbor (one always exists on a lattice) 275 neighbors: CoordArray = get_neighbors_in_bounds(current, grid_shape_) 276 next_cell: Coord = neighbors[np.random.choice(neighbors.shape[0])] 277 278 # Check for loop 279 loop_exit: int | None = None 280 for i, p in enumerate(path): 281 if np.array_equal(next_cell, p): 282 loop_exit = i 283 break 284 285 # erase the loop, or continue the walk 286 if loop_exit is not None: 287 # this removes everything after and including the loop start 288 path = path[: loop_exit + 1] 289 # reset current cell to end of path 290 current = path[-1] 291 else: 292 path.append(next_cell) 293 current = next_cell 294 295 # Add the path to the maze 296 for i in range(len(path) - 1): 297 c_1: Coord = path[i] 298 c_2: Coord = path[i + 1] 299 300 # find the dimension of the connection 301 delta: Coord = c_2 - c_1 302 dim: int = int(np.argmax(np.abs(delta))) 303 304 # if positive, down/right from current coord 305 # if negative, up/left from current coord (down/right from neighbor) 306 clist_node: Coord = c_1 if (delta.sum() > 0) else c_2 307 connection_list[dim, clist_node[0], clist_node[1]] = True 308 visited[c_1[0], c_1[1]] = True 309 # we dont add c_2 because the last c_2 will have already been visited 310 311 return LatticeMaze( 312 connection_list=connection_list, 313 generation_meta=dict( 314 func_name="gen_wilson", 315 grid_shape=grid_shape_, 316 fully_connected=True, 317 ), 318 ) 319 320 @staticmethod 321 def gen_percolation( 322 grid_shape: Coord | CoordTup, 323 p: float = 0.4, 324 lattice_dim: int = 2, 325 start_coord: Coord | None = None, 326 ) -> LatticeMaze: 327 """generate a lattice maze using simple percolation 328 329 note that p in the range (0.4, 0.7) gives the most interesting mazes 330 331 # Arguments 332 - `grid_shape: Coord`: the shape of the grid 333 - `lattice_dim: int`: the dimension of the lattice (default: `2`) 334 - `p: float`: the probability of a cell being accessible (default: `0.5`) 335 - `start_coord: Coord | None`: the starting coordinate for the connected component (default: `None` will give a random start) 336 """ 337 assert p >= 0 and p <= 1, f"p must be between 0 and 1, got {p}" # noqa: PT018 338 grid_shape_: Coord = np.array(grid_shape) 339 340 start_coord = _random_start_coord(grid_shape_, start_coord) 341 342 connection_list: ConnectionList = np.random.rand(lattice_dim, *grid_shape_) < p 343 344 connection_list = _fill_edges_with_walls(connection_list) 345 346 output: LatticeMaze = LatticeMaze( 347 connection_list=connection_list, 348 generation_meta=dict( 349 func_name="gen_percolation", 350 grid_shape=grid_shape_, 351 percolation_p=p, 352 start_coord=start_coord, 353 ), 354 ) 355 356 # generation_meta is sometimes None, but not here since we just made it a dict above 357 output.generation_meta["visited_cells"] = output.gen_connected_component_from( # type: ignore[index] 358 start_coord, 359 ) 360 361 return output 362 363 @staticmethod 364 def gen_dfs_percolation( 365 grid_shape: Coord | CoordTup, 366 p: float = 0.4, 367 lattice_dim: int = 2, 368 accessible_cells: int | None = None, 369 max_tree_depth: int | None = None, 370 start_coord: Coord | None = None, 371 ) -> LatticeMaze: 372 """dfs and then percolation (adds cycles)""" 373 grid_shape_: Coord = np.array(grid_shape) 374 start_coord = _random_start_coord(grid_shape_, start_coord) 375 376 # generate initial maze via dfs 377 maze: LatticeMaze = LatticeMazeGenerators.gen_dfs( 378 grid_shape=grid_shape_, 379 lattice_dim=lattice_dim, 380 accessible_cells=accessible_cells, 381 max_tree_depth=max_tree_depth, 382 start_coord=start_coord, 383 ) 384 385 # percolate 386 connection_list_perc: np.ndarray = ( 387 np.random.rand(*maze.connection_list.shape) < p 388 ) 389 connection_list_perc = _fill_edges_with_walls(connection_list_perc) 390 391 maze.__dict__["connection_list"] = np.logical_or( 392 maze.connection_list, 393 connection_list_perc, 394 ) 395 396 # generation_meta is sometimes None, but not here since we just made it a dict above 397 maze.generation_meta["func_name"] = "gen_dfs_percolation" # type: ignore[index] 398 maze.generation_meta["percolation_p"] = p # type: ignore[index] 399 maze.generation_meta["visited_cells"] = maze.gen_connected_component_from( # type: ignore[index] 400 start_coord, 401 ) 402 403 return maze 404 405 @staticmethod 406 def gen_kruskal( 407 grid_shape: "Coord | CoordTup", 408 lattice_dim: int = 2, 409 start_coord: "Coord | None" = None, 410 ) -> "LatticeMaze": 411 """Generate a maze using Kruskal's algorithm. 412 413 This function generates a random spanning tree over a grid using Kruskal's algorithm. 414 Each cell is treated as a node, and all valid adjacent edges are listed and processed 415 in random order. An edge is added (i.e. its passage carved) only if it connects two cells 416 that are not already connected. The resulting maze is a perfect maze (i.e. a spanning tree) 417 without cycles. 418 419 https://en.wikipedia.org/wiki/Kruskal's_algorithm 420 421 # Parameters: 422 - `grid_shape : Coord | CoordTup` 423 The shape of the maze grid (for example, `(n_rows, n_cols)`). 424 - `lattice_dim : int` 425 The lattice dimension (default is `2`). 426 - `start_coord : Coord | None` 427 Optionally, specify a starting coordinate. If `None`, a random coordinate will be chosen. 428 - `**kwargs` 429 Additional keyword arguments (currently unused). 430 431 # Returns: 432 - `LatticeMaze` 433 A maze represented by a connection list, generated as a spanning tree using Kruskal's algorithm. 434 435 # Usage: 436 ```python 437 maze = gen_kruskal((10, 10)) 438 ``` 439 """ 440 assert lattice_dim == 2, ( # noqa: PLR2004 441 "Kruskal's algorithm is only implemented for 2D lattices." 442 ) 443 # Convert grid_shape to a tuple of ints 444 grid_shape_: CoordTup = tuple(int(x) for x in grid_shape) # type: ignore[assignment] 445 n_rows, n_cols = grid_shape_ 446 447 # Initialize union-find data structure. 448 parent: dict[tuple[int, int], tuple[int, int]] = {} 449 450 def find(cell: tuple[int, int]) -> tuple[int, int]: 451 while parent[cell] != cell: 452 parent[cell] = parent[parent[cell]] 453 cell = parent[cell] 454 return cell 455 456 def union(cell1: tuple[int, int], cell2: tuple[int, int]) -> None: 457 root1 = find(cell1) 458 root2 = find(cell2) 459 parent[root2] = root1 460 461 # Initialize each cell as its own set. 462 for i in range(n_rows): 463 for j in range(n_cols): 464 parent[(i, j)] = (i, j) 465 466 # List all possible edges. 467 # For vertical edges (i.e. connecting a cell to its right neighbor): 468 edges: list[tuple[tuple[int, int], tuple[int, int], int]] = [] 469 for i in range(n_rows): 470 for j in range(n_cols - 1): 471 edges.append(((i, j), (i, j + 1), 1)) 472 # For horizontal edges (i.e. connecting a cell to its bottom neighbor): 473 for i in range(n_rows - 1): 474 for j in range(n_cols): 475 edges.append(((i, j), (i + 1, j), 0)) 476 477 # Shuffle the list of edges. 478 import random 479 480 random.shuffle(edges) 481 482 # Initialize connection_list with no connections. 483 # connection_list[0] stores downward connections (from cell (i,j) to (i+1,j)). 484 # connection_list[1] stores rightward connections (from cell (i,j) to (i,j+1)). 485 import numpy as np 486 487 connection_list = np.zeros((2, n_rows, n_cols), dtype=bool) 488 489 # Process each edge; if it connects two different trees, union them and carve the passage. 490 for cell1, cell2, direction in edges: 491 if find(cell1) != find(cell2): 492 union(cell1, cell2) 493 if direction == 0: 494 # Horizontal edge: connection is stored in connection_list[0] at cell1. 495 connection_list[0, cell1[0], cell1[1]] = True 496 else: 497 # Vertical edge: connection is stored in connection_list[1] at cell1. 498 connection_list[1, cell1[0], cell1[1]] = True 499 500 if start_coord is None: 501 start_coord = tuple(np.random.randint(0, n) for n in grid_shape_) # type: ignore[assignment] 502 503 generation_meta: dict = dict( 504 func_name="gen_kruskal", 505 grid_shape=grid_shape_, 506 start_coord=start_coord, 507 algorithm="kruskal", 508 fully_connected=True, 509 ) 510 return LatticeMaze( 511 connection_list=connection_list, generation_meta=generation_meta 512 ) 513 514 @staticmethod 515 def gen_recursive_division( 516 grid_shape: "Coord | CoordTup", 517 lattice_dim: int = 2, 518 start_coord: "Coord | None" = None, 519 ) -> "LatticeMaze": 520 """Generate a maze using the recursive division algorithm. 521 522 This function generates a maze by recursively dividing the grid with walls and carving a single 523 passage through each wall. The algorithm begins with a fully connected grid (i.e. every pair of adjacent 524 cells is connected) and then removes connections along a chosen division line—leaving one gap as a passage. 525 The resulting maze is a perfect maze, meaning there is exactly one path between any two cells. 526 527 # Parameters: 528 - `grid_shape : Coord | CoordTup` 529 The shape of the maze grid (e.g., `(n_rows, n_cols)`). 530 - `lattice_dim : int` 531 The lattice dimension (default is `2`). 532 - `start_coord : Coord | None` 533 Optionally, specify a starting coordinate. If `None`, a random coordinate is chosen. 534 - `**kwargs` 535 Additional keyword arguments (currently unused). 536 537 # Returns: 538 - `LatticeMaze` 539 A maze represented by a connection list, generated using recursive division. 540 541 # Usage: 542 ```python 543 maze = gen_recursive_division((10, 10)) 544 ``` 545 """ 546 assert lattice_dim == 2, ( # noqa: PLR2004 547 "Recursive division algorithm is only implemented for 2D lattices." 548 ) 549 # Convert grid_shape to a tuple of ints. 550 grid_shape_: CoordTup = tuple(int(x) for x in grid_shape) # type: ignore[assignment] 551 n_rows, n_cols = grid_shape_ 552 553 # Initialize connection_list as a fully connected grid. 554 # For horizontal connections: for each cell (i,j) with i in [0, n_rows-2], set connection to True. 555 # For vertical connections: for each cell (i,j) with j in [0, n_cols-2], set connection to True. 556 connection_list = np.zeros((2, n_rows, n_cols), dtype=bool) 557 connection_list[0, : n_rows - 1, :] = True 558 connection_list[1, :, : n_cols - 1] = True 559 560 def divide(x: int, y: int, width: int, height: int) -> None: 561 """Recursively divide the region starting at (x, y) with the given width and height. 562 563 Removes connections along the chosen division line except for one randomly chosen gap. 564 """ 565 if width < 2 or height < 2: # noqa: PLR2004 566 return 567 568 if width > height: 569 # Vertical division. 570 wall_col = random.randint(x + 1, x + width - 1) 571 gap_row = random.randint(y, y + height - 1) 572 for row in range(y, y + height): 573 if row == gap_row: 574 continue 575 # Remove the vertical connection between (row, wall_col-1) and (row, wall_col). 576 if wall_col - 1 < n_cols - 1: 577 connection_list[1, row, wall_col - 1] = False 578 # Recurse on the left and right subregions. 579 divide(x, y, wall_col - x, height) 580 divide(wall_col, y, x + width - wall_col, height) 581 else: 582 # Horizontal division. 583 wall_row = random.randint(y + 1, y + height - 1) 584 gap_col = random.randint(x, x + width - 1) 585 for col in range(x, x + width): 586 if col == gap_col: 587 continue 588 # Remove the horizontal connection between (wall_row-1, col) and (wall_row, col). 589 if wall_row - 1 < n_rows - 1: 590 connection_list[0, wall_row - 1, col] = False 591 # Recurse on the top and bottom subregions. 592 divide(x, y, width, wall_row - y) 593 divide(x, wall_row, width, y + height - wall_row) 594 595 # Begin the division on the full grid. 596 divide(0, 0, n_cols, n_rows) 597 598 if start_coord is None: 599 start_coord = tuple(np.random.randint(0, n) for n in grid_shape_) # type: ignore[assignment] 600 601 generation_meta: dict = dict( 602 func_name="gen_recursive_division", 603 grid_shape=grid_shape_, 604 start_coord=start_coord, 605 algorithm="recursive_division", 606 fully_connected=True, 607 ) 608 return LatticeMaze( 609 connection_list=connection_list, generation_meta=generation_meta 610 )
namespace for lattice maze generation algorithms
examples of generated mazes can be found here: https://understanding-search.github.io/maze-dataset/examples/maze_examples.html
61 @staticmethod 62 def gen_dfs( 63 grid_shape: Coord | CoordTup, 64 lattice_dim: int = 2, 65 accessible_cells: float | None = None, 66 max_tree_depth: float | None = None, 67 do_forks: bool = True, 68 randomized_stack: bool = False, 69 start_coord: Coord | None = None, 70 ) -> LatticeMaze: 71 """generate a lattice maze using depth first search, iterative 72 73 # Arguments 74 - `grid_shape: Coord`: the shape of the grid 75 - `lattice_dim: int`: the dimension of the lattice 76 (default: `2`) 77 - `accessible_cells: int | float |None`: the number of accessible cells in the maze. If `None`, defaults to the total number of cells in the grid. if a float, asserts it is <= 1 and treats it as a proportion of **total cells** 78 (default: `None`) 79 - `max_tree_depth: int | float | None`: the maximum depth of the tree. If `None`, defaults to `2 * accessible_cells`. if a float, asserts it is <= 1 and treats it as a proportion of the **sum of the grid shape** 80 (default: `None`) 81 - `do_forks: bool`: whether to allow forks in the maze. If `False`, the maze will be have no forks and will be a simple hallway. 82 - `start_coord: Coord | None`: the starting coordinate of the generation algorithm. If `None`, defaults to a random coordinate. 83 84 # algorithm 85 1. Choose the initial cell, mark it as visited and push it to the stack 86 2. While the stack is not empty 87 1. Pop a cell from the stack and make it a current cell 88 2. If the current cell has any neighbours which have not been visited 89 1. Push the current cell to the stack 90 2. Choose one of the unvisited neighbours 91 3. Remove the wall between the current cell and the chosen cell 92 4. Mark the chosen cell as visited and push it to the stack 93 """ 94 # Default values if no constraints have been passed 95 grid_shape_: Coord = np.array(grid_shape) 96 n_total_cells: int = int(np.prod(grid_shape_)) 97 98 n_accessible_cells: int 99 if accessible_cells is None: 100 n_accessible_cells = n_total_cells 101 elif isinstance(accessible_cells, float): 102 assert accessible_cells <= 1, ( 103 f"accessible_cells must be an int (count) or a float in the range [0, 1] (proportion), got {accessible_cells}" 104 ) 105 106 n_accessible_cells = int(accessible_cells * n_total_cells) 107 else: 108 assert isinstance(accessible_cells, int) 109 n_accessible_cells = accessible_cells 110 111 if max_tree_depth is None: 112 max_tree_depth = ( 113 2 * n_total_cells 114 ) # We define max tree depth counting from the start coord in two directions. Therefore we divide by two in the if clause for neighboring sites later and multiply by two here. 115 elif isinstance(max_tree_depth, float): 116 assert max_tree_depth <= 1, ( 117 f"max_tree_depth must be an int (count) or a float in the range [0, 1] (proportion), got {max_tree_depth}" 118 ) 119 120 max_tree_depth = int(max_tree_depth * np.sum(grid_shape_)) 121 122 # choose a random start coord 123 start_coord = _random_start_coord(grid_shape_, start_coord) 124 125 # initialize the maze with no connections 126 connection_list: ConnectionList = np.zeros( 127 (lattice_dim, grid_shape_[0], grid_shape_[1]), 128 dtype=np.bool_, 129 ) 130 131 # initialize the stack with the target coord 132 visited_cells: set[tuple[int, int]] = set() 133 visited_cells.add(tuple(start_coord)) # this wasnt a bug after all lol 134 stack: list[Coord] = [start_coord] 135 136 # initialize tree_depth_counter 137 current_tree_depth: int = 1 138 139 # loop until the stack is empty or n_connected_cells is reached 140 while stack and (len(visited_cells) < n_accessible_cells): 141 # get the current coord from the stack 142 current_coord: Coord 143 if randomized_stack: 144 current_coord = stack.pop(random.randint(0, len(stack) - 1)) 145 else: 146 current_coord = stack.pop() 147 148 # filter neighbors by being within grid bounds and being unvisited 149 unvisited_neighbors_deltas: list[tuple[Coord, Coord]] = [ 150 (neighbor, delta) 151 for neighbor, delta in zip( 152 current_coord + NEIGHBORS_MASK, 153 NEIGHBORS_MASK, 154 strict=False, 155 ) 156 if ( 157 (tuple(neighbor) not in visited_cells) 158 and (0 <= neighbor[0] < grid_shape_[0]) 159 and (0 <= neighbor[1] < grid_shape_[1]) 160 ) 161 ] 162 163 # don't continue if max_tree_depth/2 is already reached (divide by 2 because we can branch to multiple directions) 164 if unvisited_neighbors_deltas and ( 165 current_tree_depth <= max_tree_depth / 2 166 ): 167 # if we want a maze without forks, simply don't add the current coord back to the stack 168 if do_forks and (len(unvisited_neighbors_deltas) > 1): 169 stack.append(current_coord) 170 171 # choose one of the unvisited neighbors 172 chosen_neighbor, delta = random.choice(unvisited_neighbors_deltas) 173 174 # add connection 175 dim: int = int(np.argmax(np.abs(delta))) 176 # if positive, down/right from current coord 177 # if negative, up/left from current coord (down/right from neighbor) 178 clist_node: Coord = ( 179 current_coord if (delta.sum() > 0) else chosen_neighbor 180 ) 181 connection_list[dim, clist_node[0], clist_node[1]] = True 182 183 # add to visited cells and stack 184 visited_cells.add(tuple(chosen_neighbor)) 185 stack.append(chosen_neighbor) 186 187 # Update current tree depth 188 current_tree_depth += 1 189 else: 190 current_tree_depth -= 1 191 192 return LatticeMaze( 193 connection_list=connection_list, 194 generation_meta=dict( 195 func_name="gen_dfs", 196 grid_shape=grid_shape_, 197 start_coord=start_coord, 198 n_accessible_cells=int(n_accessible_cells), 199 max_tree_depth=int(max_tree_depth), 200 # oh my god this took so long to track down. its almost 5am and I've spent like 2 hours on this bug 201 # it was checking that len(visited_cells) == n_accessible_cells, but this means that the maze is 202 # treated as fully connected even when it is most certainly not, causing solving the maze to break 203 fully_connected=bool(len(visited_cells) == n_total_cells), 204 visited_cells={tuple(int(x) for x in coord) for coord in visited_cells}, 205 ), 206 )
generate a lattice maze using depth first search, iterative
Arguments
grid_shape: Coord
: the shape of the gridlattice_dim: int
: the dimension of the lattice (default:2
)accessible_cells: int | float |None
: the number of accessible cells in the maze. IfNone
, defaults to the total number of cells in the grid. if a float, asserts it is <= 1 and treats it as a proportion of total cells (default:None
)max_tree_depth: int | float | None
: the maximum depth of the tree. IfNone
, defaults to2 * accessible_cells
. if a float, asserts it is <= 1 and treats it as a proportion of the sum of the grid shape (default:None
)do_forks: bool
: whether to allow forks in the maze. IfFalse
, the maze will be have no forks and will be a simple hallway.start_coord: Coord | None
: the starting coordinate of the generation algorithm. IfNone
, defaults to a random coordinate.
algorithm
- Choose the initial cell, mark it as visited and push it to the stack
- While the stack is not empty
- Pop a cell from the stack and make it a current cell
- If the current cell has any neighbours which have not been visited
- Push the current cell to the stack
- Choose one of the unvisited neighbours
- Remove the wall between the current cell and the chosen cell
- Mark the chosen cell as visited and push it to the stack
208 @staticmethod 209 def gen_prim( 210 grid_shape: Coord | CoordTup, 211 lattice_dim: int = 2, 212 accessible_cells: float | None = None, 213 max_tree_depth: float | None = None, 214 do_forks: bool = True, 215 start_coord: Coord | None = None, 216 ) -> LatticeMaze: 217 "(broken!) generate a lattice maze using Prim's algorithm" 218 warnings.warn( 219 "gen_prim does not correctly implement prim's algorithm, see issue: https://github.com/understanding-search/maze-dataset/issues/12", 220 ) 221 return LatticeMazeGenerators.gen_dfs( 222 grid_shape=grid_shape, 223 lattice_dim=lattice_dim, 224 accessible_cells=accessible_cells, 225 max_tree_depth=max_tree_depth, 226 do_forks=do_forks, 227 start_coord=start_coord, 228 randomized_stack=True, 229 )
(broken!) generate a lattice maze using Prim's algorithm
231 @staticmethod 232 def gen_wilson( 233 grid_shape: Coord | CoordTup, 234 **kwargs, 235 ) -> LatticeMaze: 236 """Generate a lattice maze using Wilson's algorithm. 237 238 # Algorithm 239 Wilson's algorithm generates an unbiased (random) maze 240 sampled from the uniform distribution over all mazes, using loop-erased random walks. The generated maze is 241 acyclic and all cells are part of a unique connected space. 242 https://en.wikipedia.org/wiki/Maze_generation_algorithm#Wilson's_algorithm 243 """ 244 assert not kwargs, ( 245 f"gen_wilson does not take any additional arguments, got {kwargs = }" 246 ) 247 248 grid_shape_: Coord = np.array(grid_shape) 249 250 # Initialize grid and visited cells 251 connection_list: ConnectionList = np.zeros((2, *grid_shape_), dtype=np.bool_) 252 visited: Bool[np.ndarray, "x y"] = np.zeros(grid_shape_, dtype=np.bool_) 253 254 # Choose a random cell and mark it as visited 255 start_coord: Coord = _random_start_coord(grid_shape_, None) 256 visited[start_coord[0], start_coord[1]] = True 257 del start_coord 258 259 while not visited.all(): 260 # Perform loop-erased random walk from another random cell 261 262 # Choose walk_start only from unvisited cells 263 unvisited_coords: CoordArray = np.column_stack(np.where(~visited)) 264 walk_start: Coord = unvisited_coords[ 265 np.random.choice(unvisited_coords.shape[0]) 266 ] 267 268 # Perform the random walk 269 path: list[Coord] = [walk_start] 270 current: Coord = walk_start 271 272 # exit the loop once the current path hits a visited cell 273 while not visited[current[0], current[1]]: 274 # find a valid neighbor (one always exists on a lattice) 275 neighbors: CoordArray = get_neighbors_in_bounds(current, grid_shape_) 276 next_cell: Coord = neighbors[np.random.choice(neighbors.shape[0])] 277 278 # Check for loop 279 loop_exit: int | None = None 280 for i, p in enumerate(path): 281 if np.array_equal(next_cell, p): 282 loop_exit = i 283 break 284 285 # erase the loop, or continue the walk 286 if loop_exit is not None: 287 # this removes everything after and including the loop start 288 path = path[: loop_exit + 1] 289 # reset current cell to end of path 290 current = path[-1] 291 else: 292 path.append(next_cell) 293 current = next_cell 294 295 # Add the path to the maze 296 for i in range(len(path) - 1): 297 c_1: Coord = path[i] 298 c_2: Coord = path[i + 1] 299 300 # find the dimension of the connection 301 delta: Coord = c_2 - c_1 302 dim: int = int(np.argmax(np.abs(delta))) 303 304 # if positive, down/right from current coord 305 # if negative, up/left from current coord (down/right from neighbor) 306 clist_node: Coord = c_1 if (delta.sum() > 0) else c_2 307 connection_list[dim, clist_node[0], clist_node[1]] = True 308 visited[c_1[0], c_1[1]] = True 309 # we dont add c_2 because the last c_2 will have already been visited 310 311 return LatticeMaze( 312 connection_list=connection_list, 313 generation_meta=dict( 314 func_name="gen_wilson", 315 grid_shape=grid_shape_, 316 fully_connected=True, 317 ), 318 )
Generate a lattice maze using Wilson's algorithm.
Algorithm
Wilson's algorithm generates an unbiased (random) maze sampled from the uniform distribution over all mazes, using loop-erased random walks. The generated maze is acyclic and all cells are part of a unique connected space. https://en.wikipedia.org/wiki/Maze_generation_algorithm#Wilson's_algorithm
320 @staticmethod 321 def gen_percolation( 322 grid_shape: Coord | CoordTup, 323 p: float = 0.4, 324 lattice_dim: int = 2, 325 start_coord: Coord | None = None, 326 ) -> LatticeMaze: 327 """generate a lattice maze using simple percolation 328 329 note that p in the range (0.4, 0.7) gives the most interesting mazes 330 331 # Arguments 332 - `grid_shape: Coord`: the shape of the grid 333 - `lattice_dim: int`: the dimension of the lattice (default: `2`) 334 - `p: float`: the probability of a cell being accessible (default: `0.5`) 335 - `start_coord: Coord | None`: the starting coordinate for the connected component (default: `None` will give a random start) 336 """ 337 assert p >= 0 and p <= 1, f"p must be between 0 and 1, got {p}" # noqa: PT018 338 grid_shape_: Coord = np.array(grid_shape) 339 340 start_coord = _random_start_coord(grid_shape_, start_coord) 341 342 connection_list: ConnectionList = np.random.rand(lattice_dim, *grid_shape_) < p 343 344 connection_list = _fill_edges_with_walls(connection_list) 345 346 output: LatticeMaze = LatticeMaze( 347 connection_list=connection_list, 348 generation_meta=dict( 349 func_name="gen_percolation", 350 grid_shape=grid_shape_, 351 percolation_p=p, 352 start_coord=start_coord, 353 ), 354 ) 355 356 # generation_meta is sometimes None, but not here since we just made it a dict above 357 output.generation_meta["visited_cells"] = output.gen_connected_component_from( # type: ignore[index] 358 start_coord, 359 ) 360 361 return output
generate a lattice maze using simple percolation
note that p in the range (0.4, 0.7) gives the most interesting mazes
Arguments
grid_shape: Coord
: the shape of the gridlattice_dim: int
: the dimension of the lattice (default:2
)p: float
: the probability of a cell being accessible (default:0.5
)start_coord: Coord | None
: the starting coordinate for the connected component (default:None
will give a random start)
363 @staticmethod 364 def gen_dfs_percolation( 365 grid_shape: Coord | CoordTup, 366 p: float = 0.4, 367 lattice_dim: int = 2, 368 accessible_cells: int | None = None, 369 max_tree_depth: int | None = None, 370 start_coord: Coord | None = None, 371 ) -> LatticeMaze: 372 """dfs and then percolation (adds cycles)""" 373 grid_shape_: Coord = np.array(grid_shape) 374 start_coord = _random_start_coord(grid_shape_, start_coord) 375 376 # generate initial maze via dfs 377 maze: LatticeMaze = LatticeMazeGenerators.gen_dfs( 378 grid_shape=grid_shape_, 379 lattice_dim=lattice_dim, 380 accessible_cells=accessible_cells, 381 max_tree_depth=max_tree_depth, 382 start_coord=start_coord, 383 ) 384 385 # percolate 386 connection_list_perc: np.ndarray = ( 387 np.random.rand(*maze.connection_list.shape) < p 388 ) 389 connection_list_perc = _fill_edges_with_walls(connection_list_perc) 390 391 maze.__dict__["connection_list"] = np.logical_or( 392 maze.connection_list, 393 connection_list_perc, 394 ) 395 396 # generation_meta is sometimes None, but not here since we just made it a dict above 397 maze.generation_meta["func_name"] = "gen_dfs_percolation" # type: ignore[index] 398 maze.generation_meta["percolation_p"] = p # type: ignore[index] 399 maze.generation_meta["visited_cells"] = maze.gen_connected_component_from( # type: ignore[index] 400 start_coord, 401 ) 402 403 return maze
dfs and then percolation (adds cycles)
405 @staticmethod 406 def gen_kruskal( 407 grid_shape: "Coord | CoordTup", 408 lattice_dim: int = 2, 409 start_coord: "Coord | None" = None, 410 ) -> "LatticeMaze": 411 """Generate a maze using Kruskal's algorithm. 412 413 This function generates a random spanning tree over a grid using Kruskal's algorithm. 414 Each cell is treated as a node, and all valid adjacent edges are listed and processed 415 in random order. An edge is added (i.e. its passage carved) only if it connects two cells 416 that are not already connected. The resulting maze is a perfect maze (i.e. a spanning tree) 417 without cycles. 418 419 https://en.wikipedia.org/wiki/Kruskal's_algorithm 420 421 # Parameters: 422 - `grid_shape : Coord | CoordTup` 423 The shape of the maze grid (for example, `(n_rows, n_cols)`). 424 - `lattice_dim : int` 425 The lattice dimension (default is `2`). 426 - `start_coord : Coord | None` 427 Optionally, specify a starting coordinate. If `None`, a random coordinate will be chosen. 428 - `**kwargs` 429 Additional keyword arguments (currently unused). 430 431 # Returns: 432 - `LatticeMaze` 433 A maze represented by a connection list, generated as a spanning tree using Kruskal's algorithm. 434 435 # Usage: 436 ```python 437 maze = gen_kruskal((10, 10)) 438 ``` 439 """ 440 assert lattice_dim == 2, ( # noqa: PLR2004 441 "Kruskal's algorithm is only implemented for 2D lattices." 442 ) 443 # Convert grid_shape to a tuple of ints 444 grid_shape_: CoordTup = tuple(int(x) for x in grid_shape) # type: ignore[assignment] 445 n_rows, n_cols = grid_shape_ 446 447 # Initialize union-find data structure. 448 parent: dict[tuple[int, int], tuple[int, int]] = {} 449 450 def find(cell: tuple[int, int]) -> tuple[int, int]: 451 while parent[cell] != cell: 452 parent[cell] = parent[parent[cell]] 453 cell = parent[cell] 454 return cell 455 456 def union(cell1: tuple[int, int], cell2: tuple[int, int]) -> None: 457 root1 = find(cell1) 458 root2 = find(cell2) 459 parent[root2] = root1 460 461 # Initialize each cell as its own set. 462 for i in range(n_rows): 463 for j in range(n_cols): 464 parent[(i, j)] = (i, j) 465 466 # List all possible edges. 467 # For vertical edges (i.e. connecting a cell to its right neighbor): 468 edges: list[tuple[tuple[int, int], tuple[int, int], int]] = [] 469 for i in range(n_rows): 470 for j in range(n_cols - 1): 471 edges.append(((i, j), (i, j + 1), 1)) 472 # For horizontal edges (i.e. connecting a cell to its bottom neighbor): 473 for i in range(n_rows - 1): 474 for j in range(n_cols): 475 edges.append(((i, j), (i + 1, j), 0)) 476 477 # Shuffle the list of edges. 478 import random 479 480 random.shuffle(edges) 481 482 # Initialize connection_list with no connections. 483 # connection_list[0] stores downward connections (from cell (i,j) to (i+1,j)). 484 # connection_list[1] stores rightward connections (from cell (i,j) to (i,j+1)). 485 import numpy as np 486 487 connection_list = np.zeros((2, n_rows, n_cols), dtype=bool) 488 489 # Process each edge; if it connects two different trees, union them and carve the passage. 490 for cell1, cell2, direction in edges: 491 if find(cell1) != find(cell2): 492 union(cell1, cell2) 493 if direction == 0: 494 # Horizontal edge: connection is stored in connection_list[0] at cell1. 495 connection_list[0, cell1[0], cell1[1]] = True 496 else: 497 # Vertical edge: connection is stored in connection_list[1] at cell1. 498 connection_list[1, cell1[0], cell1[1]] = True 499 500 if start_coord is None: 501 start_coord = tuple(np.random.randint(0, n) for n in grid_shape_) # type: ignore[assignment] 502 503 generation_meta: dict = dict( 504 func_name="gen_kruskal", 505 grid_shape=grid_shape_, 506 start_coord=start_coord, 507 algorithm="kruskal", 508 fully_connected=True, 509 ) 510 return LatticeMaze( 511 connection_list=connection_list, generation_meta=generation_meta 512 )
Generate a maze using Kruskal's algorithm.
This function generates a random spanning tree over a grid using Kruskal's algorithm. Each cell is treated as a node, and all valid adjacent edges are listed and processed in random order. An edge is added (i.e. its passage carved) only if it connects two cells that are not already connected. The resulting maze is a perfect maze (i.e. a spanning tree) without cycles.
https://en.wikipedia.org/wiki/Kruskal's_algorithm
Parameters:
grid_shape : Coord | CoordTup
The shape of the maze grid (for example,(n_rows, n_cols)
).lattice_dim : int
The lattice dimension (default is2
).start_coord : Coord | None
Optionally, specify a starting coordinate. IfNone
, a random coordinate will be chosen.**kwargs
Additional keyword arguments (currently unused).
Returns:
LatticeMaze
A maze represented by a connection list, generated as a spanning tree using Kruskal's algorithm.
Usage:
maze = gen_kruskal((10, 10))
514 @staticmethod 515 def gen_recursive_division( 516 grid_shape: "Coord | CoordTup", 517 lattice_dim: int = 2, 518 start_coord: "Coord | None" = None, 519 ) -> "LatticeMaze": 520 """Generate a maze using the recursive division algorithm. 521 522 This function generates a maze by recursively dividing the grid with walls and carving a single 523 passage through each wall. The algorithm begins with a fully connected grid (i.e. every pair of adjacent 524 cells is connected) and then removes connections along a chosen division line—leaving one gap as a passage. 525 The resulting maze is a perfect maze, meaning there is exactly one path between any two cells. 526 527 # Parameters: 528 - `grid_shape : Coord | CoordTup` 529 The shape of the maze grid (e.g., `(n_rows, n_cols)`). 530 - `lattice_dim : int` 531 The lattice dimension (default is `2`). 532 - `start_coord : Coord | None` 533 Optionally, specify a starting coordinate. If `None`, a random coordinate is chosen. 534 - `**kwargs` 535 Additional keyword arguments (currently unused). 536 537 # Returns: 538 - `LatticeMaze` 539 A maze represented by a connection list, generated using recursive division. 540 541 # Usage: 542 ```python 543 maze = gen_recursive_division((10, 10)) 544 ``` 545 """ 546 assert lattice_dim == 2, ( # noqa: PLR2004 547 "Recursive division algorithm is only implemented for 2D lattices." 548 ) 549 # Convert grid_shape to a tuple of ints. 550 grid_shape_: CoordTup = tuple(int(x) for x in grid_shape) # type: ignore[assignment] 551 n_rows, n_cols = grid_shape_ 552 553 # Initialize connection_list as a fully connected grid. 554 # For horizontal connections: for each cell (i,j) with i in [0, n_rows-2], set connection to True. 555 # For vertical connections: for each cell (i,j) with j in [0, n_cols-2], set connection to True. 556 connection_list = np.zeros((2, n_rows, n_cols), dtype=bool) 557 connection_list[0, : n_rows - 1, :] = True 558 connection_list[1, :, : n_cols - 1] = True 559 560 def divide(x: int, y: int, width: int, height: int) -> None: 561 """Recursively divide the region starting at (x, y) with the given width and height. 562 563 Removes connections along the chosen division line except for one randomly chosen gap. 564 """ 565 if width < 2 or height < 2: # noqa: PLR2004 566 return 567 568 if width > height: 569 # Vertical division. 570 wall_col = random.randint(x + 1, x + width - 1) 571 gap_row = random.randint(y, y + height - 1) 572 for row in range(y, y + height): 573 if row == gap_row: 574 continue 575 # Remove the vertical connection between (row, wall_col-1) and (row, wall_col). 576 if wall_col - 1 < n_cols - 1: 577 connection_list[1, row, wall_col - 1] = False 578 # Recurse on the left and right subregions. 579 divide(x, y, wall_col - x, height) 580 divide(wall_col, y, x + width - wall_col, height) 581 else: 582 # Horizontal division. 583 wall_row = random.randint(y + 1, y + height - 1) 584 gap_col = random.randint(x, x + width - 1) 585 for col in range(x, x + width): 586 if col == gap_col: 587 continue 588 # Remove the horizontal connection between (wall_row-1, col) and (wall_row, col). 589 if wall_row - 1 < n_rows - 1: 590 connection_list[0, wall_row - 1, col] = False 591 # Recurse on the top and bottom subregions. 592 divide(x, y, width, wall_row - y) 593 divide(x, wall_row, width, y + height - wall_row) 594 595 # Begin the division on the full grid. 596 divide(0, 0, n_cols, n_rows) 597 598 if start_coord is None: 599 start_coord = tuple(np.random.randint(0, n) for n in grid_shape_) # type: ignore[assignment] 600 601 generation_meta: dict = dict( 602 func_name="gen_recursive_division", 603 grid_shape=grid_shape_, 604 start_coord=start_coord, 605 algorithm="recursive_division", 606 fully_connected=True, 607 ) 608 return LatticeMaze( 609 connection_list=connection_list, generation_meta=generation_meta 610 )
Generate a maze using the recursive division algorithm.
This function generates a maze by recursively dividing the grid with walls and carving a single passage through each wall. The algorithm begins with a fully connected grid (i.e. every pair of adjacent cells is connected) and then removes connections along a chosen division line—leaving one gap as a passage. The resulting maze is a perfect maze, meaning there is exactly one path between any two cells.
Parameters:
grid_shape : Coord | CoordTup
The shape of the maze grid (e.g.,(n_rows, n_cols)
).lattice_dim : int
The lattice dimension (default is2
).start_coord : Coord | None
Optionally, specify a starting coordinate. IfNone
, a random coordinate is chosen.**kwargs
Additional keyword arguments (currently unused).
Returns:
LatticeMaze
A maze represented by a connection list, generated using recursive division.
Usage:
maze = gen_recursive_division((10, 10))
640def get_maze_with_solution( 641 gen_name: str, 642 grid_shape: Coord | CoordTup, 643 maze_ctor_kwargs: dict | None = None, 644) -> SolvedMaze: 645 "helper function to get a maze already with a solution" 646 if maze_ctor_kwargs is None: 647 maze_ctor_kwargs = dict() 648 # TYPING: error: Too few arguments [call-arg] 649 # not sure why this is happening -- doesnt recognize the kwargs? 650 maze: LatticeMaze = GENERATORS_MAP[gen_name](grid_shape, **maze_ctor_kwargs) # type: ignore[call-arg] 651 solution: CoordArray = np.array(maze.generate_random_path()) 652 return SolvedMaze.from_lattice_maze(lattice_maze=maze, solution=solution)
helper function to get a maze already with a solution