maze_dataset.dataset.maze_dataset
MazeDatasetConfig
is where you decide what your dataset should look like, then pass it to MazeDataset.from_config
to generate or load the dataset.
1"""`MazeDatasetConfig` is where you decide what your dataset should look like, then pass it to `MazeDataset.from_config` to generate or load the dataset. 2 3see [demo_dataset notebook](../../notebooks/demo_dataset) 4 5""" 6 7import copy 8import json 9import multiprocessing 10import typing 11import warnings 12from pathlib import Path 13from typing import Literal, Optional, cast, overload 14 15import numpy as np 16import tqdm 17from jaxtyping import Int 18from muutils.json_serialize import ( 19 json_serialize, 20) 21from muutils.json_serialize.util import ( 22 _FORMAT_KEY, 23 JSONdict, 24) 25from muutils.misc import stable_hash 26from zanj import ZANJ 27from zanj.loading import LoaderHandler, load_item_recursive, register_loader_handler 28 29from maze_dataset.constants import CoordArray 30from maze_dataset.dataset.dataset import ( 31 GPTDataset, 32) 33from maze_dataset.dataset.maze_dataset_config import ( 34 SERIALIZE_MINIMAL_THRESHOLD, 35 EndpointKwargsType, 36 MazeDatasetConfig, 37) 38from maze_dataset.generation.seed import GLOBAL_SEED 39from maze_dataset.maze import LatticeMaze, SolvedMaze 40 41_GLOBAL_WORKER_CONFIG: MazeDatasetConfig 42 43 44def _generate_maze_helper(index: int) -> Optional[SolvedMaze]: # noqa: ARG001 45 """Helper function for generating mazes in parallel. 46 47 > [!CAUTION] 48 > don't use this unless generating in parallel! 49 """ 50 global _GLOBAL_WORKER_CONFIG # noqa: PLW0602 51 # TODO: don't use this unless generating in parallel! 52 maze: LatticeMaze = _GLOBAL_WORKER_CONFIG.maze_ctor( 53 grid_shape=_GLOBAL_WORKER_CONFIG.grid_shape_np, 54 **_GLOBAL_WORKER_CONFIG.maze_ctor_kwargs, 55 ) 56 57 endpoint_kwargs: EndpointKwargsType = _GLOBAL_WORKER_CONFIG.endpoint_kwargs.copy() 58 59 # Generate the solution 60 # mypy doesnt realize EndpointKwargsType has only string keys: `Keywords must be strings [misc]` 61 # TYPING: error: No overload variant of "generate_random_path" of "LatticeMaze" matches argument type "dict[Literal['allowed_start', 'allowed_end', 'deadend_start', 'deadend_end', 'endpoints_not_equal', 'except_on_no_valid_endpoint'], bool | list[tuple[int, int]] | None]" [call-overload] 62 solution: Optional[CoordArray] = maze.generate_random_path(**endpoint_kwargs) # type: ignore[misc, call-overload] 63 64 # Validate the solution 65 if ( 66 solution is None 67 or len(solution) == 0 68 or not isinstance(solution, np.ndarray) 69 # magic value is fine here 70 or len(solution.shape) != 2 # noqa: PLR2004 71 ): 72 return None # Return None if the solution is invalid 73 74 return SolvedMaze.from_lattice_maze( 75 lattice_maze=maze, 76 solution=solution, 77 ) 78 79 80def _maze_gen_init_worker(config: MazeDatasetConfig) -> None: 81 """special worker helper 82 83 > [!CAUTION] 84 > this makes the generation depend both on whether parallelism is used, and on the number of processes. this is bad! 85 86 """ 87 # TODO: dont use globals here! 88 global _GLOBAL_WORKER_CONFIG # noqa: PLW0603 89 _GLOBAL_WORKER_CONFIG = config 90 91 process_id: tuple[int, ...] = multiprocessing.current_process()._identity 92 if len(process_id) == 0: 93 # no multiprocessing, seed was already set 94 pass 95 elif len(process_id) == 1: 96 # multiprocessing, adjust seed based on process id 97 # only set numpy seed, since we do not use other random gens 98 np.random.seed( 99 _GLOBAL_WORKER_CONFIG.seed 100 or GLOBAL_SEED # if the seed is None, use the global seed 101 + process_id[0] 102 ) 103 else: 104 err_msg = ( 105 f"unexpected process id: {process_id = }\n{multiprocessing.Process() = }" 106 ) 107 raise ValueError( 108 err_msg, 109 ) 110 111 112class MazeDataset(GPTDataset[MazeDatasetConfig]): 113 """a maze dataset class. This is a collection of solved mazes, and should be initialized via `MazeDataset.from_config`""" 114 115 def __init__( 116 self, 117 cfg: MazeDatasetConfig, 118 mazes: typing.Sequence[SolvedMaze], 119 generation_metadata_collected: dict | None = None, 120 ) -> None: 121 """initialize a maze dataset from a config and a list of solved mazes""" 122 super().__init__() 123 self.cfg: MazeDatasetConfig = cfg 124 self.mazes: list[SolvedMaze] = list(mazes) 125 self.generation_metadata_collected: dict | None = generation_metadata_collected 126 127 # TYPING: error: Return type "MazeDataset" of "from_config" incompatible with return type "T_Dataset" in supertype "GPTDataset" [override] 128 @classmethod 129 def from_config( # type: ignore[override] 130 cls, 131 # TYPING: error: Argument 1 of "from_config" is incompatible with supertype "GPTDataset"; supertype defines the argument type as "T_DatasetConfig" [override] 132 cfg: MazeDatasetConfig, # type: ignore[override] 133 do_generate: bool = True, 134 load_local: bool = True, 135 save_local: bool = True, 136 zanj: ZANJ | None = None, 137 do_download: bool = True, 138 local_base_path: Path = Path("data/maze_dataset"), 139 except_on_config_mismatch: bool = True, 140 allow_generation_metadata_filter_mismatch: bool = True, 141 verbose: bool = False, 142 **kwargs, 143 ) -> "MazeDataset": 144 """create a maze dataset from a config 145 146 priority of loading: 147 1. load from local 148 2. download 149 3. generate 150 151 """ 152 return cast( 153 MazeDataset, 154 super().from_config( 155 cfg=cfg, 156 do_generate=do_generate, 157 load_local=load_local, 158 save_local=save_local, 159 zanj=zanj, 160 do_download=do_download, 161 local_base_path=local_base_path, 162 except_on_config_mismatch=except_on_config_mismatch, 163 allow_generation_metadata_filter_mismatch=allow_generation_metadata_filter_mismatch, 164 verbose=verbose, 165 **kwargs, 166 ), 167 ) 168 169 def data_hash(self) -> int: 170 """return a hash of the data""" 171 return stable_hash(str(tuple([x.serialize() for x in self.mazes]))) 172 173 def __getitem__(self, i: int) -> SolvedMaze: 174 """get a maze by index""" 175 return self.mazes[i] 176 177 def __iter__(self) -> typing.Iterator[SolvedMaze]: 178 """iterate over the mazes""" 179 return iter(self.mazes) 180 181 def __deepcopy__(self, memo) -> "MazeDataset": # noqa: ANN001 182 """deepcopy the dataset 183 184 FIX: this isnt actually a deepcopy I think? 185 """ 186 return MazeDataset.load(self._serialize_full()) 187 188 # TYPING: get type hints on the tokenizer here 189 @overload 190 def as_tokens( 191 self, 192 maze_tokenizer, # noqa: ANN001 193 limit: int | None = None, 194 join_tokens_individual_maze: Literal[False] = False, 195 ) -> list[list[str]]: ... 196 @overload 197 def as_tokens( 198 self, 199 maze_tokenizer, # noqa: ANN001 200 limit: int | None = None, 201 join_tokens_individual_maze: Literal[True] = True, 202 ) -> list[str]: ... 203 def as_tokens( 204 self, 205 maze_tokenizer, # TODO: MazeTokenizer 206 limit: int | None = None, 207 join_tokens_individual_maze: bool = False, 208 ) -> list[list[str]] | list[str]: 209 """return the dataset as tokens according to the passed `maze_tokenizer` 210 211 the `maze_tokenizer` should be either a `MazeTokenizer` or a `MazeTokenizerModular` 212 213 if `join_tokens_individual_maze` is True, then the tokens of each maze are 214 joined with a space, and the result is a list of strings. 215 i.e.: 216 217 >>> dataset.as_tokens(join_tokens_individual_maze=False) 218 [["a", "b", "c"], ["d", "e", "f"]] 219 >>> dataset.as_tokens(join_tokens_individual_maze=True) 220 ["a b c", "d e f"] 221 """ 222 output: list[list[str]] = [ 223 maze.as_tokens(maze_tokenizer) for maze in self.mazes[:limit] 224 ] 225 if join_tokens_individual_maze: 226 return [" ".join(tokens) for tokens in output] 227 else: 228 return output 229 230 def __len__(self) -> int: 231 """return the number of mazes in the dataset""" 232 return len(self.mazes) 233 234 def __eq__(self, other: object) -> bool: 235 """compare two datasets""" 236 if not isinstance(other, MazeDataset): 237 raise NotImplementedError( 238 "can only compare with other MazeDataset objects", 239 ) 240 # TODO: compare hashes of data instead of the data itself? 241 return self.cfg == other.cfg and self.mazes == other.mazes 242 243 def assert_equal(self, other: "MazeDataset") -> None: 244 """assert that two datasets are equal""" 245 assert isinstance(other, MazeDataset) 246 assert self.cfg == other.cfg, f"{self.cfg.diff(other.cfg) = }" 247 assert self.mazes == other.mazes, f"{self.mazes = }, {other.mazes = }" 248 249 @classmethod 250 def generate( 251 cls, 252 cfg: MazeDatasetConfig, 253 gen_parallel: bool = False, 254 pool_kwargs: dict | None = None, 255 verbose: bool = False, 256 # TODO: what to do when unexpected kwargs are passed? 257 **kwargs, # noqa: ARG003 258 ) -> "MazeDataset": 259 """Generate a maze dataset given a config and some generation parameters""" 260 # Copy the config to avoid modifying the original 261 cfg_cpy: MazeDatasetConfig = MazeDatasetConfig.load( 262 json.loads(json.dumps(cfg.serialize())), 263 ) 264 265 if pool_kwargs is None: 266 pool_kwargs = dict() 267 maze_indexes: Int[np.ndarray, " maze_index"] = np.arange(cfg_cpy.n_mazes) # type: ignore[assignment] 268 269 solved_mazes: list[SolvedMaze | None] 270 # Configure tqdm for progress bar 271 tqdm_kwargs: dict = dict( 272 total=cfg_cpy.n_mazes, 273 unit="maze", 274 desc="generating & solving mazes", 275 disable=not verbose, 276 ) 277 # TODO: don't use the global unless generating in parallel! 278 if gen_parallel: 279 with multiprocessing.Pool( 280 **pool_kwargs, 281 initializer=_maze_gen_init_worker, 282 initargs=(cfg_cpy,), 283 ) as pool: 284 solved_mazes = list( 285 tqdm.tqdm( 286 pool.imap(_generate_maze_helper, maze_indexes), 287 **tqdm_kwargs, 288 ), 289 ) 290 291 else: 292 _maze_gen_init_worker(cfg_cpy) 293 solved_mazes = list( 294 tqdm.tqdm( 295 map( 296 # TYPING: error: Argument 1 to "map" has incompatible type "Callable[[int], SolvedMaze | None]"; expected "Callable[[str], SolvedMaze | None]" [arg-type] 297 # why does it think tolist() returns a string? 298 _generate_maze_helper, # type: ignore[arg-type] 299 maze_indexes.tolist(), 300 ), 301 **tqdm_kwargs, 302 ), 303 ) 304 305 # Filter out None values explicitly after ensuring all results are collected 306 solved_mazes_: list[SolvedMaze] = [ 307 maze for maze in solved_mazes if maze is not None 308 ] 309 # solved_mazes_ = list(filter(lambda x: x is not None, solved_mazes)) 310 311 # Update the config with the actual number of mazes 312 cfg_cpy.n_mazes = len(solved_mazes_) 313 314 dataset: MazeDataset = cls( 315 cfg=cfg_cpy, 316 mazes=solved_mazes_, 317 ) 318 319 dataset.update_self_config() # Call `update_self_config()` to ensure the dataset's config reflects changes 320 321 np.random.seed(cfg_cpy.seed) # Reset the seed to the value in the config copy 322 323 return dataset 324 325 @classmethod 326 def download(cls, cfg: MazeDatasetConfig, **kwargs) -> "MazeDataset": 327 "(not implemented yet!) download a maze dataset from the internet" 328 raise NotImplementedError("not implemented yet") 329 330 @classmethod 331 def load(cls: "type[MazeDataset]", data: JSONdict) -> "MazeDataset": 332 """load from zanj/json""" 333 if data[_FORMAT_KEY] == "MazeDataset:minimal": 334 return cls._load_minimal(data) 335 elif data[_FORMAT_KEY] == "MazeDataset:minimal_soln_cat": 336 return cls._load_minimal_soln_cat(data) 337 elif data[_FORMAT_KEY] == "MazeDataset": 338 if ( 339 SERIALIZE_MINIMAL_THRESHOLD == -1 340 ): # Allow access to `_load_legacy` for profiling 341 return cls._load_legacy(data) 342 return cls._load_full(data) 343 else: 344 err_msg: str = f"`_FORMAT_KEY` string {data[_FORMAT_KEY] = } is not a recognized `MazeDataset` format. ({_FORMAT_KEY = })" 345 raise KeyError( 346 err_msg, 347 ) 348 349 @classmethod 350 def _load_full(cls, data: JSONdict) -> "MazeDataset": 351 assert data[_FORMAT_KEY] == "MazeDataset" 352 return cls( 353 cfg=MazeDatasetConfig.load(data["cfg"]), # type: ignore[arg-type] 354 mazes=load_item_recursive(data["mazes"], tuple()), 355 generation_metadata_collected=data["generation_metadata_collected"], # type: ignore[arg-type] 356 ) 357 358 @classmethod 359 def _load_minimal(cls, data: JSONdict) -> "MazeDataset": 360 assert data[_FORMAT_KEY] == "MazeDataset:minimal" 361 return cls( 362 cfg=MazeDatasetConfig.load(data["cfg"]), # type: ignore[arg-type] 363 generation_metadata_collected=data["generation_metadata_collected"], # type: ignore[arg-type] 364 mazes=[ 365 SolvedMaze( 366 clist, 367 soln[:slen, ...], 368 ) 369 for clist, slen, soln in zip( 370 load_item_recursive(data["maze_connection_lists"], tuple()), 371 load_item_recursive(data["maze_solution_lengths"], tuple()), 372 load_item_recursive(data["maze_solutions"], tuple()), 373 strict=False, 374 # load_item_recursive(data["maze_endpoints"], tuple()), 375 ) 376 ], 377 ) 378 379 @classmethod 380 def _load_minimal_soln_cat(cls, data: JSONdict) -> "MazeDataset": 381 assert data[_FORMAT_KEY] == "MazeDataset:minimal_soln_cat" 382 383 maze_solution_lengths = load_item_recursive( 384 data["maze_solution_lengths"], 385 tuple(), 386 ) 387 maze_solutions_concat = load_item_recursive( 388 data["maze_solutions_concat"], 389 tuple(), 390 ) 391 maze_solutions = np.split( 392 maze_solutions_concat, 393 np.cumsum(maze_solution_lengths)[:-1], 394 axis=0, 395 ) 396 397 return cls( 398 cfg=load_item_recursive(data["cfg"], tuple()), 399 generation_metadata_collected=load_item_recursive( 400 data["generation_metadata_collected"], 401 tuple(), 402 ), 403 mazes=[ 404 SolvedMaze( 405 connection_list=clist, 406 solution=soln, 407 ) 408 for clist, soln in zip( 409 load_item_recursive(data["maze_connection_lists"], tuple()), 410 # load_item_recursive(data["maze_endpoints"], tuple()), 411 maze_solutions, 412 strict=False, 413 ) 414 ], 415 ) 416 417 @classmethod 418 def _load_legacy(cls, data: JSONdict) -> "MazeDataset": 419 """Legacy `load` method from <0.5.2. Used exclusively for profiling comparison.""" 420 assert data[_FORMAT_KEY] == "MazeDataset" 421 return cls( 422 **{ 423 key: load_item_recursive(data[key], tuple()) 424 for key in ["cfg", "mazes", "generation_metadata_collected"] 425 }, 426 ) 427 428 def serialize(self) -> JSONdict: 429 """serialize to zanj/json""" 430 if ( 431 SERIALIZE_MINIMAL_THRESHOLD is not None 432 and len(self) >= SERIALIZE_MINIMAL_THRESHOLD 433 ): 434 return self._serialize_minimal() 435 return self._serialize_full() 436 437 def _serialize_full(self) -> JSONdict: 438 return { 439 _FORMAT_KEY: "MazeDataset", 440 "cfg": json_serialize(self.cfg), 441 "fname": self.cfg.to_fname(), 442 "mazes": json_serialize(self.mazes), 443 "generation_metadata_collected": json_serialize( 444 self.generation_metadata_collected, 445 ), 446 } 447 448 def _serialize_minimal(self) -> JSONdict: 449 "alternate serialization where metadata is collected and mazes are stored in concatenated form" 450 filtered_meta: MazeDataset 451 if self.generation_metadata_collected is None: 452 filtered_meta = self.filter_by.collect_generation_meta() 453 else: 454 filtered_meta = self 455 456 max_solution_len: int = max(m.solution.shape[0] for m in filtered_meta.mazes) 457 n_mazes: int = len(filtered_meta.mazes) 458 grid_n: int = filtered_meta.cfg.grid_n 459 460 maze_connection_lists: np.ndarray = np.empty( 461 (n_mazes, 2, grid_n, grid_n), 462 dtype=np.bool_, 463 ) 464 # maze_endpoints: np.ndarray = np.empty((n_mazes, 2, 2), dtype=np.int8) 465 maze_solution_lengths: np.ndarray = np.empty((n_mazes,), dtype=np.int32) 466 maze_solutions: np.ndarray = np.empty( 467 (n_mazes, max_solution_len, 2), 468 dtype=np.int8, 469 ) 470 471 for idx, maze in enumerate(filtered_meta.mazes): 472 maze_connection_lists[idx] = maze.connection_list 473 # maze_endpoints[idx] = np.array([maze.start_pos, maze.end_pos]) 474 maze_solution_lengths[idx] = maze.solution.shape[0] 475 maze_solutions[idx, : maze.solution.shape[0]] = maze.solution 476 477 return { 478 _FORMAT_KEY: "MazeDataset:minimal", 479 "cfg": json_serialize(filtered_meta.cfg), 480 "fname": filtered_meta.cfg.to_fname(), 481 "generation_metadata_collected": json_serialize( 482 filtered_meta.generation_metadata_collected, 483 ), 484 "maze_connection_lists": maze_connection_lists, # type: ignore[dict-item] 485 # "maze_endpoints": maze_endpoints, 486 "maze_solution_lengths": maze_solution_lengths, # type: ignore[dict-item] 487 "maze_solutions": maze_solutions, # type: ignore[dict-item] 488 } 489 490 def _serialize_minimal_soln_cat(self: "MazeDataset") -> JSONdict: 491 "alternate serialization where metadata is collected, and mazes and their solutions are stored in concatenated form" 492 filtered_meta: MazeDataset 493 if self.generation_metadata_collected is None: 494 filtered_meta = self.filter_by.collect_generation_meta() 495 else: 496 filtered_meta = self 497 498 maze_solution_lengths: np.ndarray = np.array( 499 [m.solution.shape[0] for m in filtered_meta.mazes], 500 dtype=np.int32, 501 ) 502 n_mazes: int = len(filtered_meta.mazes) 503 grid_n: int = filtered_meta.cfg.grid_n 504 total_solution_len: int = np.sum(maze_solution_lengths) 505 506 maze_connection_lists: np.ndarray = np.empty( 507 (n_mazes, 2, grid_n, grid_n), 508 dtype=np.bool_, 509 ) 510 maze_endpoints: np.ndarray = np.empty((n_mazes, 2, 2), dtype=np.int8) 511 maze_solutions_concat: np.ndarray = np.empty( 512 (total_solution_len, 2), 513 dtype=np.int8, 514 ) 515 516 solutions_running_idx: int = 0 517 for idx, maze in enumerate(filtered_meta.mazes): 518 maze_connection_lists[idx] = maze.connection_list 519 maze_endpoints[idx] = np.array([maze.start_pos, maze.end_pos]) 520 soln_len: int = maze.solution.shape[0] 521 maze_solution_lengths[idx] = soln_len 522 maze_solutions_concat[ 523 solutions_running_idx : solutions_running_idx + soln_len 524 ] = maze.solution 525 solutions_running_idx += soln_len 526 527 return { 528 _FORMAT_KEY: "MazeDataset:minimal_soln_cat", 529 "cfg": json_serialize(filtered_meta.cfg), 530 "fname": filtered_meta.cfg.to_fname(), 531 "generation_metadata_collected": json_serialize( 532 filtered_meta.generation_metadata_collected, 533 ), 534 "maze_connection_lists": maze_connection_lists, # type: ignore[dict-item] 535 "maze_endpoints": maze_endpoints, # type: ignore[dict-item] 536 "maze_solution_lengths": maze_solution_lengths, # type: ignore[dict-item] 537 "maze_solutions_concat": maze_solutions_concat, # type: ignore[dict-item] 538 } 539 540 def update_self_config(self) -> None: 541 """update the config to match the current state of the dataset (number of mazes, such as after filtering)""" 542 if self.cfg.n_mazes != len(self.mazes): 543 warnings.warn( 544 f"updating config n_mazes from {self.cfg.n_mazes} to {len(self.mazes)}", 545 ) 546 self.cfg.n_mazes = len(self.mazes) 547 548 def custom_maze_filter( 549 self, 550 method: typing.Callable[[SolvedMaze], bool], 551 **kwargs, 552 ) -> "MazeDataset": 553 """filter the dataset using a custom method""" 554 output: MazeDataset = MazeDataset( 555 cfg=copy.deepcopy(self.cfg), 556 mazes=[m for m in self.mazes if method(m, **kwargs)], 557 ) 558 output.cfg.applied_filters.append( 559 { 560 "name": f"__custom__:{method.__name__}", 561 "kwargs": kwargs, 562 }, 563 ) 564 output.update_self_config() 565 return output 566 567 568MazeDatasetConfig._dataset_class = property( # type: ignore[method-assign, assignment] 569 lambda self: MazeDataset, # noqa: ARG005 570) 571 572# register things with zanj 573register_loader_handler( 574 LoaderHandler( 575 check=lambda json_item, path=None, z=None: ( # type: ignore[misc] # noqa: ARG005 576 isinstance(json_item, typing.Mapping) 577 and _FORMAT_KEY in json_item 578 and json_item[_FORMAT_KEY].startswith("MazeDataset") 579 ), 580 load=lambda json_item, path=None, z=None: MazeDataset.load(json_item), # type: ignore[misc] # noqa: ARG005 581 uid="MazeDataset", 582 source_pckg="maze_dataset.generation.maze_dataset", 583 desc="MazeDataset", 584 ), 585) 586 587 588# TODO: the code below is for doing some smarter collecting and type checking. Probably will delete. 589""" 590collect either the type at the field, or the shape of the field if it is an array 591metadata_types: dict[str, set[type, tuple]] = dict() 592for maze in new_dataset: 593 for key, value in maze.generation_meta.items(): 594 if key not in metadata_types: 595 metadata_types[key] = set() 596 597 if isinstance(value, np.ndarray): 598 metadata_types[key].add(value.shape) 599 else: 600 metadata_types[key].add(type(value)) 601 602# figure out what to do for each field 603metadata_actions: dict[str, typing.Callable] = dict() 604for key, key_type in metadata_types.items(): 605 if all(isinstance(kt, tuple) for kt in key_type): 606 if all(kt == (2,) for kt in key_type): 607 # its all coords, do a statcounter on those coords 608 metadata_actions[key] = lambda vals: Counter(tuple(x) for x in vals) 609 elif all( 610 (len(kt) == 2) and (kt[1] == 2) 611 for kt in key_type 612 ): 613 # its a list of coords, do a statcounter on those coords 614 metadata_actions[key] = lambda vals: Counter( 615 tuple(x) for x in np.concatenate(vals) 616 ) 617 else: 618 # its a list of something else, do a counter on those 619 # TODO: throw except here? 620 metadata_actions[key] = Counter 621 622 elif all(kt in (bool, int, float) for kt in key_type): 623 # statcounter for numeric types 624 metadata_actions[key] = StatCounter 625 elif all(kt == str for kt in key_type): 626 # counter for string types 627 metadata_actions[key] = Counter 628 else: 629 # counter for everything else 630 # TODO: throw except here? 631 metadata_actions[key] = Counter 632"""
113class MazeDataset(GPTDataset[MazeDatasetConfig]): 114 """a maze dataset class. This is a collection of solved mazes, and should be initialized via `MazeDataset.from_config`""" 115 116 def __init__( 117 self, 118 cfg: MazeDatasetConfig, 119 mazes: typing.Sequence[SolvedMaze], 120 generation_metadata_collected: dict | None = None, 121 ) -> None: 122 """initialize a maze dataset from a config and a list of solved mazes""" 123 super().__init__() 124 self.cfg: MazeDatasetConfig = cfg 125 self.mazes: list[SolvedMaze] = list(mazes) 126 self.generation_metadata_collected: dict | None = generation_metadata_collected 127 128 # TYPING: error: Return type "MazeDataset" of "from_config" incompatible with return type "T_Dataset" in supertype "GPTDataset" [override] 129 @classmethod 130 def from_config( # type: ignore[override] 131 cls, 132 # TYPING: error: Argument 1 of "from_config" is incompatible with supertype "GPTDataset"; supertype defines the argument type as "T_DatasetConfig" [override] 133 cfg: MazeDatasetConfig, # type: ignore[override] 134 do_generate: bool = True, 135 load_local: bool = True, 136 save_local: bool = True, 137 zanj: ZANJ | None = None, 138 do_download: bool = True, 139 local_base_path: Path = Path("data/maze_dataset"), 140 except_on_config_mismatch: bool = True, 141 allow_generation_metadata_filter_mismatch: bool = True, 142 verbose: bool = False, 143 **kwargs, 144 ) -> "MazeDataset": 145 """create a maze dataset from a config 146 147 priority of loading: 148 1. load from local 149 2. download 150 3. generate 151 152 """ 153 return cast( 154 MazeDataset, 155 super().from_config( 156 cfg=cfg, 157 do_generate=do_generate, 158 load_local=load_local, 159 save_local=save_local, 160 zanj=zanj, 161 do_download=do_download, 162 local_base_path=local_base_path, 163 except_on_config_mismatch=except_on_config_mismatch, 164 allow_generation_metadata_filter_mismatch=allow_generation_metadata_filter_mismatch, 165 verbose=verbose, 166 **kwargs, 167 ), 168 ) 169 170 def data_hash(self) -> int: 171 """return a hash of the data""" 172 return stable_hash(str(tuple([x.serialize() for x in self.mazes]))) 173 174 def __getitem__(self, i: int) -> SolvedMaze: 175 """get a maze by index""" 176 return self.mazes[i] 177 178 def __iter__(self) -> typing.Iterator[SolvedMaze]: 179 """iterate over the mazes""" 180 return iter(self.mazes) 181 182 def __deepcopy__(self, memo) -> "MazeDataset": # noqa: ANN001 183 """deepcopy the dataset 184 185 FIX: this isnt actually a deepcopy I think? 186 """ 187 return MazeDataset.load(self._serialize_full()) 188 189 # TYPING: get type hints on the tokenizer here 190 @overload 191 def as_tokens( 192 self, 193 maze_tokenizer, # noqa: ANN001 194 limit: int | None = None, 195 join_tokens_individual_maze: Literal[False] = False, 196 ) -> list[list[str]]: ... 197 @overload 198 def as_tokens( 199 self, 200 maze_tokenizer, # noqa: ANN001 201 limit: int | None = None, 202 join_tokens_individual_maze: Literal[True] = True, 203 ) -> list[str]: ... 204 def as_tokens( 205 self, 206 maze_tokenizer, # TODO: MazeTokenizer 207 limit: int | None = None, 208 join_tokens_individual_maze: bool = False, 209 ) -> list[list[str]] | list[str]: 210 """return the dataset as tokens according to the passed `maze_tokenizer` 211 212 the `maze_tokenizer` should be either a `MazeTokenizer` or a `MazeTokenizerModular` 213 214 if `join_tokens_individual_maze` is True, then the tokens of each maze are 215 joined with a space, and the result is a list of strings. 216 i.e.: 217 218 >>> dataset.as_tokens(join_tokens_individual_maze=False) 219 [["a", "b", "c"], ["d", "e", "f"]] 220 >>> dataset.as_tokens(join_tokens_individual_maze=True) 221 ["a b c", "d e f"] 222 """ 223 output: list[list[str]] = [ 224 maze.as_tokens(maze_tokenizer) for maze in self.mazes[:limit] 225 ] 226 if join_tokens_individual_maze: 227 return [" ".join(tokens) for tokens in output] 228 else: 229 return output 230 231 def __len__(self) -> int: 232 """return the number of mazes in the dataset""" 233 return len(self.mazes) 234 235 def __eq__(self, other: object) -> bool: 236 """compare two datasets""" 237 if not isinstance(other, MazeDataset): 238 raise NotImplementedError( 239 "can only compare with other MazeDataset objects", 240 ) 241 # TODO: compare hashes of data instead of the data itself? 242 return self.cfg == other.cfg and self.mazes == other.mazes 243 244 def assert_equal(self, other: "MazeDataset") -> None: 245 """assert that two datasets are equal""" 246 assert isinstance(other, MazeDataset) 247 assert self.cfg == other.cfg, f"{self.cfg.diff(other.cfg) = }" 248 assert self.mazes == other.mazes, f"{self.mazes = }, {other.mazes = }" 249 250 @classmethod 251 def generate( 252 cls, 253 cfg: MazeDatasetConfig, 254 gen_parallel: bool = False, 255 pool_kwargs: dict | None = None, 256 verbose: bool = False, 257 # TODO: what to do when unexpected kwargs are passed? 258 **kwargs, # noqa: ARG003 259 ) -> "MazeDataset": 260 """Generate a maze dataset given a config and some generation parameters""" 261 # Copy the config to avoid modifying the original 262 cfg_cpy: MazeDatasetConfig = MazeDatasetConfig.load( 263 json.loads(json.dumps(cfg.serialize())), 264 ) 265 266 if pool_kwargs is None: 267 pool_kwargs = dict() 268 maze_indexes: Int[np.ndarray, " maze_index"] = np.arange(cfg_cpy.n_mazes) # type: ignore[assignment] 269 270 solved_mazes: list[SolvedMaze | None] 271 # Configure tqdm for progress bar 272 tqdm_kwargs: dict = dict( 273 total=cfg_cpy.n_mazes, 274 unit="maze", 275 desc="generating & solving mazes", 276 disable=not verbose, 277 ) 278 # TODO: don't use the global unless generating in parallel! 279 if gen_parallel: 280 with multiprocessing.Pool( 281 **pool_kwargs, 282 initializer=_maze_gen_init_worker, 283 initargs=(cfg_cpy,), 284 ) as pool: 285 solved_mazes = list( 286 tqdm.tqdm( 287 pool.imap(_generate_maze_helper, maze_indexes), 288 **tqdm_kwargs, 289 ), 290 ) 291 292 else: 293 _maze_gen_init_worker(cfg_cpy) 294 solved_mazes = list( 295 tqdm.tqdm( 296 map( 297 # TYPING: error: Argument 1 to "map" has incompatible type "Callable[[int], SolvedMaze | None]"; expected "Callable[[str], SolvedMaze | None]" [arg-type] 298 # why does it think tolist() returns a string? 299 _generate_maze_helper, # type: ignore[arg-type] 300 maze_indexes.tolist(), 301 ), 302 **tqdm_kwargs, 303 ), 304 ) 305 306 # Filter out None values explicitly after ensuring all results are collected 307 solved_mazes_: list[SolvedMaze] = [ 308 maze for maze in solved_mazes if maze is not None 309 ] 310 # solved_mazes_ = list(filter(lambda x: x is not None, solved_mazes)) 311 312 # Update the config with the actual number of mazes 313 cfg_cpy.n_mazes = len(solved_mazes_) 314 315 dataset: MazeDataset = cls( 316 cfg=cfg_cpy, 317 mazes=solved_mazes_, 318 ) 319 320 dataset.update_self_config() # Call `update_self_config()` to ensure the dataset's config reflects changes 321 322 np.random.seed(cfg_cpy.seed) # Reset the seed to the value in the config copy 323 324 return dataset 325 326 @classmethod 327 def download(cls, cfg: MazeDatasetConfig, **kwargs) -> "MazeDataset": 328 "(not implemented yet!) download a maze dataset from the internet" 329 raise NotImplementedError("not implemented yet") 330 331 @classmethod 332 def load(cls: "type[MazeDataset]", data: JSONdict) -> "MazeDataset": 333 """load from zanj/json""" 334 if data[_FORMAT_KEY] == "MazeDataset:minimal": 335 return cls._load_minimal(data) 336 elif data[_FORMAT_KEY] == "MazeDataset:minimal_soln_cat": 337 return cls._load_minimal_soln_cat(data) 338 elif data[_FORMAT_KEY] == "MazeDataset": 339 if ( 340 SERIALIZE_MINIMAL_THRESHOLD == -1 341 ): # Allow access to `_load_legacy` for profiling 342 return cls._load_legacy(data) 343 return cls._load_full(data) 344 else: 345 err_msg: str = f"`_FORMAT_KEY` string {data[_FORMAT_KEY] = } is not a recognized `MazeDataset` format. ({_FORMAT_KEY = })" 346 raise KeyError( 347 err_msg, 348 ) 349 350 @classmethod 351 def _load_full(cls, data: JSONdict) -> "MazeDataset": 352 assert data[_FORMAT_KEY] == "MazeDataset" 353 return cls( 354 cfg=MazeDatasetConfig.load(data["cfg"]), # type: ignore[arg-type] 355 mazes=load_item_recursive(data["mazes"], tuple()), 356 generation_metadata_collected=data["generation_metadata_collected"], # type: ignore[arg-type] 357 ) 358 359 @classmethod 360 def _load_minimal(cls, data: JSONdict) -> "MazeDataset": 361 assert data[_FORMAT_KEY] == "MazeDataset:minimal" 362 return cls( 363 cfg=MazeDatasetConfig.load(data["cfg"]), # type: ignore[arg-type] 364 generation_metadata_collected=data["generation_metadata_collected"], # type: ignore[arg-type] 365 mazes=[ 366 SolvedMaze( 367 clist, 368 soln[:slen, ...], 369 ) 370 for clist, slen, soln in zip( 371 load_item_recursive(data["maze_connection_lists"], tuple()), 372 load_item_recursive(data["maze_solution_lengths"], tuple()), 373 load_item_recursive(data["maze_solutions"], tuple()), 374 strict=False, 375 # load_item_recursive(data["maze_endpoints"], tuple()), 376 ) 377 ], 378 ) 379 380 @classmethod 381 def _load_minimal_soln_cat(cls, data: JSONdict) -> "MazeDataset": 382 assert data[_FORMAT_KEY] == "MazeDataset:minimal_soln_cat" 383 384 maze_solution_lengths = load_item_recursive( 385 data["maze_solution_lengths"], 386 tuple(), 387 ) 388 maze_solutions_concat = load_item_recursive( 389 data["maze_solutions_concat"], 390 tuple(), 391 ) 392 maze_solutions = np.split( 393 maze_solutions_concat, 394 np.cumsum(maze_solution_lengths)[:-1], 395 axis=0, 396 ) 397 398 return cls( 399 cfg=load_item_recursive(data["cfg"], tuple()), 400 generation_metadata_collected=load_item_recursive( 401 data["generation_metadata_collected"], 402 tuple(), 403 ), 404 mazes=[ 405 SolvedMaze( 406 connection_list=clist, 407 solution=soln, 408 ) 409 for clist, soln in zip( 410 load_item_recursive(data["maze_connection_lists"], tuple()), 411 # load_item_recursive(data["maze_endpoints"], tuple()), 412 maze_solutions, 413 strict=False, 414 ) 415 ], 416 ) 417 418 @classmethod 419 def _load_legacy(cls, data: JSONdict) -> "MazeDataset": 420 """Legacy `load` method from <0.5.2. Used exclusively for profiling comparison.""" 421 assert data[_FORMAT_KEY] == "MazeDataset" 422 return cls( 423 **{ 424 key: load_item_recursive(data[key], tuple()) 425 for key in ["cfg", "mazes", "generation_metadata_collected"] 426 }, 427 ) 428 429 def serialize(self) -> JSONdict: 430 """serialize to zanj/json""" 431 if ( 432 SERIALIZE_MINIMAL_THRESHOLD is not None 433 and len(self) >= SERIALIZE_MINIMAL_THRESHOLD 434 ): 435 return self._serialize_minimal() 436 return self._serialize_full() 437 438 def _serialize_full(self) -> JSONdict: 439 return { 440 _FORMAT_KEY: "MazeDataset", 441 "cfg": json_serialize(self.cfg), 442 "fname": self.cfg.to_fname(), 443 "mazes": json_serialize(self.mazes), 444 "generation_metadata_collected": json_serialize( 445 self.generation_metadata_collected, 446 ), 447 } 448 449 def _serialize_minimal(self) -> JSONdict: 450 "alternate serialization where metadata is collected and mazes are stored in concatenated form" 451 filtered_meta: MazeDataset 452 if self.generation_metadata_collected is None: 453 filtered_meta = self.filter_by.collect_generation_meta() 454 else: 455 filtered_meta = self 456 457 max_solution_len: int = max(m.solution.shape[0] for m in filtered_meta.mazes) 458 n_mazes: int = len(filtered_meta.mazes) 459 grid_n: int = filtered_meta.cfg.grid_n 460 461 maze_connection_lists: np.ndarray = np.empty( 462 (n_mazes, 2, grid_n, grid_n), 463 dtype=np.bool_, 464 ) 465 # maze_endpoints: np.ndarray = np.empty((n_mazes, 2, 2), dtype=np.int8) 466 maze_solution_lengths: np.ndarray = np.empty((n_mazes,), dtype=np.int32) 467 maze_solutions: np.ndarray = np.empty( 468 (n_mazes, max_solution_len, 2), 469 dtype=np.int8, 470 ) 471 472 for idx, maze in enumerate(filtered_meta.mazes): 473 maze_connection_lists[idx] = maze.connection_list 474 # maze_endpoints[idx] = np.array([maze.start_pos, maze.end_pos]) 475 maze_solution_lengths[idx] = maze.solution.shape[0] 476 maze_solutions[idx, : maze.solution.shape[0]] = maze.solution 477 478 return { 479 _FORMAT_KEY: "MazeDataset:minimal", 480 "cfg": json_serialize(filtered_meta.cfg), 481 "fname": filtered_meta.cfg.to_fname(), 482 "generation_metadata_collected": json_serialize( 483 filtered_meta.generation_metadata_collected, 484 ), 485 "maze_connection_lists": maze_connection_lists, # type: ignore[dict-item] 486 # "maze_endpoints": maze_endpoints, 487 "maze_solution_lengths": maze_solution_lengths, # type: ignore[dict-item] 488 "maze_solutions": maze_solutions, # type: ignore[dict-item] 489 } 490 491 def _serialize_minimal_soln_cat(self: "MazeDataset") -> JSONdict: 492 "alternate serialization where metadata is collected, and mazes and their solutions are stored in concatenated form" 493 filtered_meta: MazeDataset 494 if self.generation_metadata_collected is None: 495 filtered_meta = self.filter_by.collect_generation_meta() 496 else: 497 filtered_meta = self 498 499 maze_solution_lengths: np.ndarray = np.array( 500 [m.solution.shape[0] for m in filtered_meta.mazes], 501 dtype=np.int32, 502 ) 503 n_mazes: int = len(filtered_meta.mazes) 504 grid_n: int = filtered_meta.cfg.grid_n 505 total_solution_len: int = np.sum(maze_solution_lengths) 506 507 maze_connection_lists: np.ndarray = np.empty( 508 (n_mazes, 2, grid_n, grid_n), 509 dtype=np.bool_, 510 ) 511 maze_endpoints: np.ndarray = np.empty((n_mazes, 2, 2), dtype=np.int8) 512 maze_solutions_concat: np.ndarray = np.empty( 513 (total_solution_len, 2), 514 dtype=np.int8, 515 ) 516 517 solutions_running_idx: int = 0 518 for idx, maze in enumerate(filtered_meta.mazes): 519 maze_connection_lists[idx] = maze.connection_list 520 maze_endpoints[idx] = np.array([maze.start_pos, maze.end_pos]) 521 soln_len: int = maze.solution.shape[0] 522 maze_solution_lengths[idx] = soln_len 523 maze_solutions_concat[ 524 solutions_running_idx : solutions_running_idx + soln_len 525 ] = maze.solution 526 solutions_running_idx += soln_len 527 528 return { 529 _FORMAT_KEY: "MazeDataset:minimal_soln_cat", 530 "cfg": json_serialize(filtered_meta.cfg), 531 "fname": filtered_meta.cfg.to_fname(), 532 "generation_metadata_collected": json_serialize( 533 filtered_meta.generation_metadata_collected, 534 ), 535 "maze_connection_lists": maze_connection_lists, # type: ignore[dict-item] 536 "maze_endpoints": maze_endpoints, # type: ignore[dict-item] 537 "maze_solution_lengths": maze_solution_lengths, # type: ignore[dict-item] 538 "maze_solutions_concat": maze_solutions_concat, # type: ignore[dict-item] 539 } 540 541 def update_self_config(self) -> None: 542 """update the config to match the current state of the dataset (number of mazes, such as after filtering)""" 543 if self.cfg.n_mazes != len(self.mazes): 544 warnings.warn( 545 f"updating config n_mazes from {self.cfg.n_mazes} to {len(self.mazes)}", 546 ) 547 self.cfg.n_mazes = len(self.mazes) 548 549 def custom_maze_filter( 550 self, 551 method: typing.Callable[[SolvedMaze], bool], 552 **kwargs, 553 ) -> "MazeDataset": 554 """filter the dataset using a custom method""" 555 output: MazeDataset = MazeDataset( 556 cfg=copy.deepcopy(self.cfg), 557 mazes=[m for m in self.mazes if method(m, **kwargs)], 558 ) 559 output.cfg.applied_filters.append( 560 { 561 "name": f"__custom__:{method.__name__}", 562 "kwargs": kwargs, 563 }, 564 ) 565 output.update_self_config() 566 return output
a maze dataset class. This is a collection of solved mazes, and should be initialized via MazeDataset.from_config
116 def __init__( 117 self, 118 cfg: MazeDatasetConfig, 119 mazes: typing.Sequence[SolvedMaze], 120 generation_metadata_collected: dict | None = None, 121 ) -> None: 122 """initialize a maze dataset from a config and a list of solved mazes""" 123 super().__init__() 124 self.cfg: MazeDatasetConfig = cfg 125 self.mazes: list[SolvedMaze] = list(mazes) 126 self.generation_metadata_collected: dict | None = generation_metadata_collected
initialize a maze dataset from a config and a list of solved mazes
129 @classmethod 130 def from_config( # type: ignore[override] 131 cls, 132 # TYPING: error: Argument 1 of "from_config" is incompatible with supertype "GPTDataset"; supertype defines the argument type as "T_DatasetConfig" [override] 133 cfg: MazeDatasetConfig, # type: ignore[override] 134 do_generate: bool = True, 135 load_local: bool = True, 136 save_local: bool = True, 137 zanj: ZANJ | None = None, 138 do_download: bool = True, 139 local_base_path: Path = Path("data/maze_dataset"), 140 except_on_config_mismatch: bool = True, 141 allow_generation_metadata_filter_mismatch: bool = True, 142 verbose: bool = False, 143 **kwargs, 144 ) -> "MazeDataset": 145 """create a maze dataset from a config 146 147 priority of loading: 148 1. load from local 149 2. download 150 3. generate 151 152 """ 153 return cast( 154 MazeDataset, 155 super().from_config( 156 cfg=cfg, 157 do_generate=do_generate, 158 load_local=load_local, 159 save_local=save_local, 160 zanj=zanj, 161 do_download=do_download, 162 local_base_path=local_base_path, 163 except_on_config_mismatch=except_on_config_mismatch, 164 allow_generation_metadata_filter_mismatch=allow_generation_metadata_filter_mismatch, 165 verbose=verbose, 166 **kwargs, 167 ), 168 )
create a maze dataset from a config
priority of loading:
- load from local
- download
- generate
170 def data_hash(self) -> int: 171 """return a hash of the data""" 172 return stable_hash(str(tuple([x.serialize() for x in self.mazes])))
return a hash of the data
204 def as_tokens( 205 self, 206 maze_tokenizer, # TODO: MazeTokenizer 207 limit: int | None = None, 208 join_tokens_individual_maze: bool = False, 209 ) -> list[list[str]] | list[str]: 210 """return the dataset as tokens according to the passed `maze_tokenizer` 211 212 the `maze_tokenizer` should be either a `MazeTokenizer` or a `MazeTokenizerModular` 213 214 if `join_tokens_individual_maze` is True, then the tokens of each maze are 215 joined with a space, and the result is a list of strings. 216 i.e.: 217 218 >>> dataset.as_tokens(join_tokens_individual_maze=False) 219 [["a", "b", "c"], ["d", "e", "f"]] 220 >>> dataset.as_tokens(join_tokens_individual_maze=True) 221 ["a b c", "d e f"] 222 """ 223 output: list[list[str]] = [ 224 maze.as_tokens(maze_tokenizer) for maze in self.mazes[:limit] 225 ] 226 if join_tokens_individual_maze: 227 return [" ".join(tokens) for tokens in output] 228 else: 229 return output
return the dataset as tokens according to the passed maze_tokenizer
the maze_tokenizer
should be either a MazeTokenizer
or a MazeTokenizerModular
if join_tokens_individual_maze
is True, then the tokens of each maze are
joined with a space, and the result is a list of strings.
i.e.:
>>> dataset.as_tokens(join_tokens_individual_maze=False)
[["a", "b", "c"], ["d", "e", "f"]]
>>> dataset.as_tokens(join_tokens_individual_maze=True)
["a b c", "d e f"]
244 def assert_equal(self, other: "MazeDataset") -> None: 245 """assert that two datasets are equal""" 246 assert isinstance(other, MazeDataset) 247 assert self.cfg == other.cfg, f"{self.cfg.diff(other.cfg) = }" 248 assert self.mazes == other.mazes, f"{self.mazes = }, {other.mazes = }"
assert that two datasets are equal
250 @classmethod 251 def generate( 252 cls, 253 cfg: MazeDatasetConfig, 254 gen_parallel: bool = False, 255 pool_kwargs: dict | None = None, 256 verbose: bool = False, 257 # TODO: what to do when unexpected kwargs are passed? 258 **kwargs, # noqa: ARG003 259 ) -> "MazeDataset": 260 """Generate a maze dataset given a config and some generation parameters""" 261 # Copy the config to avoid modifying the original 262 cfg_cpy: MazeDatasetConfig = MazeDatasetConfig.load( 263 json.loads(json.dumps(cfg.serialize())), 264 ) 265 266 if pool_kwargs is None: 267 pool_kwargs = dict() 268 maze_indexes: Int[np.ndarray, " maze_index"] = np.arange(cfg_cpy.n_mazes) # type: ignore[assignment] 269 270 solved_mazes: list[SolvedMaze | None] 271 # Configure tqdm for progress bar 272 tqdm_kwargs: dict = dict( 273 total=cfg_cpy.n_mazes, 274 unit="maze", 275 desc="generating & solving mazes", 276 disable=not verbose, 277 ) 278 # TODO: don't use the global unless generating in parallel! 279 if gen_parallel: 280 with multiprocessing.Pool( 281 **pool_kwargs, 282 initializer=_maze_gen_init_worker, 283 initargs=(cfg_cpy,), 284 ) as pool: 285 solved_mazes = list( 286 tqdm.tqdm( 287 pool.imap(_generate_maze_helper, maze_indexes), 288 **tqdm_kwargs, 289 ), 290 ) 291 292 else: 293 _maze_gen_init_worker(cfg_cpy) 294 solved_mazes = list( 295 tqdm.tqdm( 296 map( 297 # TYPING: error: Argument 1 to "map" has incompatible type "Callable[[int], SolvedMaze | None]"; expected "Callable[[str], SolvedMaze | None]" [arg-type] 298 # why does it think tolist() returns a string? 299 _generate_maze_helper, # type: ignore[arg-type] 300 maze_indexes.tolist(), 301 ), 302 **tqdm_kwargs, 303 ), 304 ) 305 306 # Filter out None values explicitly after ensuring all results are collected 307 solved_mazes_: list[SolvedMaze] = [ 308 maze for maze in solved_mazes if maze is not None 309 ] 310 # solved_mazes_ = list(filter(lambda x: x is not None, solved_mazes)) 311 312 # Update the config with the actual number of mazes 313 cfg_cpy.n_mazes = len(solved_mazes_) 314 315 dataset: MazeDataset = cls( 316 cfg=cfg_cpy, 317 mazes=solved_mazes_, 318 ) 319 320 dataset.update_self_config() # Call `update_self_config()` to ensure the dataset's config reflects changes 321 322 np.random.seed(cfg_cpy.seed) # Reset the seed to the value in the config copy 323 324 return dataset
Generate a maze dataset given a config and some generation parameters
326 @classmethod 327 def download(cls, cfg: MazeDatasetConfig, **kwargs) -> "MazeDataset": 328 "(not implemented yet!) download a maze dataset from the internet" 329 raise NotImplementedError("not implemented yet")
(not implemented yet!) download a maze dataset from the internet
331 @classmethod 332 def load(cls: "type[MazeDataset]", data: JSONdict) -> "MazeDataset": 333 """load from zanj/json""" 334 if data[_FORMAT_KEY] == "MazeDataset:minimal": 335 return cls._load_minimal(data) 336 elif data[_FORMAT_KEY] == "MazeDataset:minimal_soln_cat": 337 return cls._load_minimal_soln_cat(data) 338 elif data[_FORMAT_KEY] == "MazeDataset": 339 if ( 340 SERIALIZE_MINIMAL_THRESHOLD == -1 341 ): # Allow access to `_load_legacy` for profiling 342 return cls._load_legacy(data) 343 return cls._load_full(data) 344 else: 345 err_msg: str = f"`_FORMAT_KEY` string {data[_FORMAT_KEY] = } is not a recognized `MazeDataset` format. ({_FORMAT_KEY = })" 346 raise KeyError( 347 err_msg, 348 )
load from zanj/json
429 def serialize(self) -> JSONdict: 430 """serialize to zanj/json""" 431 if ( 432 SERIALIZE_MINIMAL_THRESHOLD is not None 433 and len(self) >= SERIALIZE_MINIMAL_THRESHOLD 434 ): 435 return self._serialize_minimal() 436 return self._serialize_full()
serialize to zanj/json
541 def update_self_config(self) -> None: 542 """update the config to match the current state of the dataset (number of mazes, such as after filtering)""" 543 if self.cfg.n_mazes != len(self.mazes): 544 warnings.warn( 545 f"updating config n_mazes from {self.cfg.n_mazes} to {len(self.mazes)}", 546 ) 547 self.cfg.n_mazes = len(self.mazes)
update the config to match the current state of the dataset (number of mazes, such as after filtering)
549 def custom_maze_filter( 550 self, 551 method: typing.Callable[[SolvedMaze], bool], 552 **kwargs, 553 ) -> "MazeDataset": 554 """filter the dataset using a custom method""" 555 output: MazeDataset = MazeDataset( 556 cfg=copy.deepcopy(self.cfg), 557 mazes=[m for m in self.mazes if method(m, **kwargs)], 558 ) 559 output.cfg.applied_filters.append( 560 { 561 "name": f"__custom__:{method.__name__}", 562 "kwargs": kwargs, 563 }, 564 ) 565 output.update_self_config() 566 return output
filter the dataset using a custom method