Coverage for maze_dataset/tokenization/modular/all_tokenizers.py: 57%
65 statements
« prev ^ index » next coverage.py v7.6.12, created at 2025-04-09 12:48 -0600
« prev ^ index » next coverage.py v7.6.12, created at 2025-04-09 12:48 -0600
1"""Contains `get_all_tokenizers()` and supporting limited-use functions.
3# `get_all_tokenizers()`
4returns a comprehensive collection of all valid `MazeTokenizerModular` objects.
5This is an overwhelming majority subset of the set of all possible `MazeTokenizerModular` objects.
6Other tokenizers not contained in `get_all_tokenizers()` may be possible to construct, but they are untested and not guaranteed to work.
7This collection is in a separate module since it is expensive to compute and will grow more expensive as features are added to `MazeTokenizerModular`.
9## Use Cases
10In general, uses for this module are limited to development of the library and specific research studying many tokenization behaviors.
11- Unit testing:
12 - Tokenizers to use in unit tests are sampled from `get_all_tokenizers()`
13- Large-scale tokenizer research:
14 - Specific research training models on many tokenization behaviors can use `get_all_tokenizers()` as the maximally inclusive collection
15 - `get_all_tokenizers()` may be subsequently filtered using `MazeTokenizerModular.has_element`
16For other uses, it's likely that the computational expense can be avoided by using
17- `maze_tokenizer.get_all_tokenizer_hashes()` for membership checks
18- `utils.all_instances` for generating smaller subsets of `MazeTokenizerModular` or `_TokenizerElement` objects
20# `EVERY_TEST_TOKENIZERS`
21A collection of the tokenizers which should always be included in unit tests when test fuzzing is used.
22This collection should be expanded as specific tokenizers become canonical or popular.
23"""
25import functools
26import multiprocessing
27import random
28from functools import cache
29from pathlib import Path
30from typing import Callable
32import frozendict
33import numpy as np
34from muutils.spinner import NoOpContextManager, SpinnerContext
35from tqdm import tqdm
37from maze_dataset.tokenization import (
38 CoordTokenizers,
39 MazeTokenizerModular,
40 PromptSequencers,
41 StepTokenizers,
42 _TokenizerElement,
43)
44from maze_dataset.tokenization.modular.all_instances import FiniteValued, all_instances
45from maze_dataset.tokenization.modular.hashing import (
46 AllTokenizersHashBitLength,
47 AllTokenizersHashDtype,
48 AllTokenizersHashesArray,
49)
51# Always include this as the first item in the dict `validation_funcs` whenever using `all_instances` with `MazeTokenizerModular`
52# TYPING: error: Type variable "maze_dataset.utils.FiniteValued" is unbound [valid-type]
53# note: (Hint: Use "Generic[FiniteValued]" or "Protocol[FiniteValued]" base class to bind "FiniteValued" inside a class)
54# note: (Hint: Use "FiniteValued" in function signature to bind "FiniteValued" inside a function)
55MAZE_TOKENIZER_MODULAR_DEFAULT_VALIDATION_FUNCS: frozendict.frozendict[
56 type[FiniteValued],
57 Callable[[FiniteValued], bool],
58] = frozendict.frozendict(
59 {
60 # TYPING: Item "bool" of the upper bound "bool | IsDataclass | Enum" of type variable "FiniteValued" has no attribute "is_valid" [union-attr]
61 _TokenizerElement: lambda x: x.is_valid(),
62 # Currently no need for `MazeTokenizerModular.is_valid` since that method contains no special cases not already covered by `_TokenizerElement.is_valid`
63 # MazeTokenizerModular: lambda x: x.is_valid(),
64 # TYPING: error: No overload variant of "set" matches argument type "FiniteValued" [call-overload]
65 # note: Possible overload variants:
66 # note: def [_T] set(self) -> set[_T]
67 # note: def [_T] set(self, Iterable[_T], /) -> set[_T]
68 # TYPING: error: Argument 1 to "len" has incompatible type "FiniteValued"; expected "Sized" [arg-type]
69 StepTokenizers.StepTokenizerPermutation: lambda x: len(set(x)) == len(x)
70 and x != (StepTokenizers.Distance(),),
71 },
72)
74DOWNLOAD_URL: str = "https://raw.githubusercontent.com/understanding-search/maze-dataset/main/maze_dataset/tokenization/MazeTokenizerModular_hashes.npz"
77@cache
78def get_all_tokenizers() -> list[MazeTokenizerModular]:
79 """Computes a complete list of all valid tokenizers.
81 Warning: This is an expensive function.
82 """
83 return list(
84 all_instances(
85 MazeTokenizerModular,
86 validation_funcs=MAZE_TOKENIZER_MODULAR_DEFAULT_VALIDATION_FUNCS,
87 ),
88 )
91@cache
92def get_all_tokenizers_names() -> list[str]:
93 """computes the sorted list of names of all tokenizers"""
94 return sorted([tokenizer.name for tokenizer in get_all_tokenizers()])
97EVERY_TEST_TOKENIZERS: list[MazeTokenizerModular] = [
98 MazeTokenizerModular(),
99 MazeTokenizerModular(
100 prompt_sequencer=PromptSequencers.AOTP(coord_tokenizer=CoordTokenizers.CTT()),
101 ),
102 # TODO: add more here as specific tokenizers become canonical and frequently used
103]
106@cache
107def all_tokenizers_set() -> set[MazeTokenizerModular]:
108 """Casts `get_all_tokenizers()` to a set."""
109 return set(get_all_tokenizers())
112@cache
113def _all_tokenizers_except_every_test_tokenizers() -> list[MazeTokenizerModular]:
114 """Returns"""
115 return list(all_tokenizers_set().difference(EVERY_TEST_TOKENIZERS))
118def sample_all_tokenizers(n: int) -> list[MazeTokenizerModular]:
119 """Samples `n` tokenizers from `get_all_tokenizers()`."""
120 return random.sample(get_all_tokenizers(), n)
123def sample_tokenizers_for_test(n: int | None) -> list[MazeTokenizerModular]:
124 """Returns a sample of size `n` of unique elements from `get_all_tokenizers()`,
126 always including every element in `EVERY_TEST_TOKENIZERS`.
127 """
128 if n is None:
129 return get_all_tokenizers()
131 if n < len(EVERY_TEST_TOKENIZERS):
132 err_msg: str = f"`n` must be at least {len(EVERY_TEST_TOKENIZERS) = } such that the sample can contain `EVERY_TEST_TOKENIZERS`."
133 raise ValueError(
134 err_msg,
135 )
136 sample: list[MazeTokenizerModular] = random.sample(
137 _all_tokenizers_except_every_test_tokenizers(),
138 n - len(EVERY_TEST_TOKENIZERS),
139 )
140 sample.extend(EVERY_TEST_TOKENIZERS)
141 return sample
144def save_hashes(
145 path: Path | None = None,
146 verbose: bool = False,
147 parallelize: bool | int = False,
148) -> AllTokenizersHashesArray:
149 """Computes, sorts, and saves the hashes of every member of `get_all_tokenizers()`."""
150 spinner = (
151 functools.partial(SpinnerContext, spinner_chars="square_dot")
152 if verbose
153 else NoOpContextManager
154 )
156 # get all tokenizers
157 with spinner(initial_value="getting all tokenizers...", update_interval=2.0):
158 all_tokenizers = get_all_tokenizers()
160 # compute hashes
161 hashes_array_np64: AllTokenizersHashesArray
162 if parallelize:
163 n_cpus: int = (
164 parallelize if int(parallelize) > 1 else multiprocessing.cpu_count()
165 )
166 with spinner( # noqa: SIM117
167 initial_value=f"using {n_cpus} processes to compute {len(all_tokenizers)} tokenizer hashes...",
168 update_interval=2.0,
169 ):
170 with multiprocessing.Pool(processes=n_cpus) as pool:
171 hashes_list: list[int] = list(pool.map(hash, all_tokenizers))
173 with spinner(initial_value="converting hashes to numpy array..."):
174 hashes_array_np64 = np.array(hashes_list, dtype=np.int64)
175 else:
176 with spinner(
177 initial_value=f"computing {len(all_tokenizers)} tokenizer hashes...",
178 ):
179 hashes_array_np64 = np.array(
180 [
181 hash(obj) # uses stable hash
182 for obj in tqdm(all_tokenizers, disable=not verbose)
183 ],
184 dtype=np.int64,
185 )
187 # convert to correct dtype
188 hashes_array: AllTokenizersHashesArray = (
189 hashes_array_np64 % (1 << AllTokenizersHashBitLength)
190 if AllTokenizersHashBitLength < 64 # noqa: PLR2004
191 else hashes_array_np64
192 ).astype(AllTokenizersHashDtype)
194 # make sure there are no dupes
195 with spinner(initial_value="sorting and checking for hash collisions..."):
196 sorted_hashes, counts = np.unique(hashes_array, return_counts=True)
197 if sorted_hashes.shape[0] != hashes_array.shape[0]:
198 collisions: np.array = sorted_hashes[counts > 1]
199 n_collisions: int = hashes_array.shape[0] - sorted_hashes.shape[0]
200 err_msg: str = (
201 f"{n_collisions} tokenizer hash collisions: {collisions}\n"
202 "Report error to the developer to increase the hash size or otherwise update the tokenizer hashing size:\n"
203 f"https://github.com/understanding-search/maze-dataset/issues/new?labels=bug,tokenization&title=Tokenizer+hash+collision+error&body={n_collisions}+collisions+out+of+{hashes_array.shape[0]}+total+hashes",
204 )
206 raise ValueError(
207 err_msg,
208 )
210 # save and return
211 with spinner(initial_value="saving hashes...", update_interval=0.5):
212 if path is None:
213 path = Path(__file__).parent / "MazeTokenizerModular_hashes.npz"
214 np.savez_compressed(
215 path,
216 hashes=sorted_hashes,
217 )
219 return sorted_hashes